《山东大学学报(理学版)》 ›› 2022, Vol. 57 ›› Issue (7): 103-110.doi: 10.6040/j.issn.1671-9352.0.2021.147
• • 上一篇
纪翔峰*,张妍,敖晓宇
JI Xiang-feng*, ZHANG Yan, AO Xiao-yu
摘要: 提出了目标导向型双属性路径效用模型,用于分析随机交通网络中出行时间和出行时间可靠度两属性影响下出行者的路径选择行为,其中能够达到的目标决定了路径效用的大小。所提出的模型具有3个特点:一是考虑出行者感知误差,从而得到出行时间和出行时间可靠度的感知值;二是基于感知值的边际分布,采用Copula函数刻画感知值间的随机相关性;三是出行者为每个属性赋予特定目标,并且提出了目标间的相互作用,即互补关系。基于所提出的路径效用模型,进一步提出了考虑出行者感知误差的目标导向型双属性用户均衡模型,将其表示为变分不等式问题,采用连续平均算法对其进行求解。最后通过数值实验验证了出行者不同出行行为下的表现和算法的有效性,并对相关参数进行了敏感性分析。提出的模型拓展了出行者路径选择的研究范围。
中图分类号:
[1] WARDROP J G. Road paper. Some theoretical aspects of road traffic research[J]. Proceedings of the institution of civil engineers, 1952, 1(3):325-362. [2] XU H, LOU Y, YIN Y, et al. A prospect-based user equilibrium model with endogenous reference points and its application in congestion pricing[J]. Transportation Research Part B: Methodological, 2011, 45(2):311-328. [3] CHEN A, ZHOU Z. The α-reliable mean-excess traffic equilibrium model with stochastic travel times[J]. Transportation Research Part B: Methodological, 2010, 44(4):493-513. [4] LO H K, LUO X W, SIU B W Y. Degradable transport network: travel time budget of travelers with heterogeneous risk aversion[J]. Transportation Research Part B: Methodological, 2006, 40(9):792-806. [5] DAGANZO C F, SHEFFI Y. On stochastic models of traffic assignment[J]. Transportation Science, 1977, 11(3):253-274. [6] BROWNSTONE D, GHOSH A, GOLOB T F, et al. Drivers willingness-to-pay to reduce travel time: evidence from the San Diego I-15 congestion pricing project[J]. Transportation Research Part A: Policy and Practice, 2003, 37(4):373-387. [7] MIRCHANDANI P, SOROUSH H. Generalized traffic equilibrium with probabilistic travel times and perceptions[J]. Transportation Science, 1987, 21(3):133-152. [8] 刘燕妮, 吴义虎, 郑颖杰. 基于出行时间预算的SUE交通分配[J]. 长沙交通学院学报, 2007, 23(4):44-49. LIU Yanni, WU Yihu, ZHENG Yingjie. SUE traffic assignment model based on travel time budget[J]. Journal of Changsha Communications University, 2007, 23(4):44-49. [9] 要甲, 史峰, 周钊, 等. 基于出行时间预算的多模式多类用户城市交通均衡分析[J]. 中南大学学报(自然科学版), 2011, 42(11):3572-3577. YAO Jia, SHI Feng, ZHOU Zhao, et al. Multi-mode and multi-class users urban transportation equilibrium analysis based on travel time budget[J]. Journal of Central South University(Science and Technology), 2011, 42(11):3572-3577. [10] NIKOLOVA E, STIER-MOSES N E. A mean-risk model for the traffic assignment problem with stochastic travel times[J]. Operations Research, 2014, 62(2):366-382. [11] 赵磊, 关宏志, 张新洁, 等. 考虑路径走行时间边界的行程时间可靠性研究[J]. 华南理工大学学报(自然科学版), 2019, 47(6):127. ZHAO Lei, GUAN Hongzhi, ZHANG Xinjie, et al. Study on travel time reliability considering route travel time boundary[J]. Journal of South China University of Technology(Natural Science Edition), 2019, 47(6):127. [12] YANG H, HUANG H J. The multi-class, multi-criteria traffic network equilibrium and systems optimum problem[J]. Transportation Research Part B: Methodological, 2004, 38(1):1-15. [13] WANG J Y T, EHRGOTT M, CHEN A. A bi-objective user equilibrium model of travel time reliability in a road network[J]. Transportation Research Part B: Methodological, 2014, 66:4-15. [14] SUN C, CHENG L, ZHU S, et al. Multi-criteria user equilibrium model considering travel time, travel time reliability and distance[J]. Transportation Research Part D: Transport and Environment, 2019, 66:3-12. [15] CHEN A, ZHOU Z, LAM W H K. Modeling stochastic perception error in the mean-excess traffic equilibrium model[J]. Transportation Research Part B: Methodological, 2011, 45(10):1619-1640. [16] 况爱武, 黄中祥. 基于风险价值理论的多用户类弹性需求随机分配[J]. 中南大学学报(自然科学版), 2013, 44(12):5139-5146. KUANG Aiwu, HUANG Zhongxiang. Stochastic traffic assignment with multiple user classes and elastic demand based on value at risk theory[J]. Journal of Central South University(Science and Technology), 2013, 44(12):5139-5146. [17] JI X, CHU Y. A target-oriented bi-attribute user equilibrium model with travelers perception errors on the tolled traffic network[J]. Transportation Research Part E: Logistics and Transportation Review, 2020, 144:102150. [18] LO H K, TUNG Y K. Network with degradable links: capacity analysis and design[J]. Transportation Research Part B: Methodological, 2003, 37(4):345-363. [19] RÜSCHENDORF L. Copulas, Sklars theorem, and distributional transform[M] //Mathematical Risk Analysis. Berlin: Springer, 2013: 3-34. [20] BHAT C R, ELURU N. A copula-based approach to accommodate residential self-selection effects in travel behavior modeling[J]. Transportation Research Part B: Methodological, 2009, 43(7):749-765. [21] CHEN L, GUO S. Copulas and its application in hydrology and water resources[M]. Singapore: Springer, 2019. |
No related articles found! |
|