《山东大学学报(理学版)》 ›› 2022, Vol. 57 ›› Issue (4): 66-75.doi: 10.6040/j.issn.1671-9352.0.2021.248
• • 上一篇
张盈,刘强强,马巧珍*
ZHANG Ying, LIU Qiang-qiang, MA Qiao-zhen*
摘要: 利用能量估计和收缩函数的方法,研究了具有线性记忆和非线性阻尼的基尔霍夫型梁方程解的长时间动力学行为,获得了弱拓扑空间中全局吸引子的存在性,部分推广了已有的一些结果。
中图分类号:
[1] WOINOWSKY-KRIEGER S. The effect of an axial force on the vibration of hinged bars[J]. Journal of Applied Mechanics Transactions of the ASME, 1950, 17(1):35-36. [2] BERGER H M. A new approach to the analysis of large deflections of plates[J]. Journal of Applied Mechanics Transactions of the ASME, 1955, 22(4):465-472. [3] JORGE S, MA T F. On a viscoelastic plate equation with history setting and perturbation of p-Laplacian type[J]. IMA Journal of Applied Mathematics, 2013(6):1130-1146. [4] BALL J M. Initial-boundary value problems for an extensible beam[J]. Journal of Mathematical Analysis and Applications, 1973, 42(1):61-90. [5] BALL J M. Stability theory for an extensible beam[J]. Journal of Differential Equations, 1973, 14(3):399-418. [6] DICKEY R W. Free vibrations and dynamic buckling of the extensible beam[J]. Journal of Mathematical Analysis and Applications, 1970, 29(2):443-454. [7] BIAZUTTI A C, CRIPPA H R. Global attractor and inertial set for the beam equation[J]. Applicable Analysis, 1994, 55(1/2):61-78. [8] GIORGI C, NASO M G, PATA V, POTOMKIN M. Global attractors for the extensible thermoelastic beam system[J]. Journal of Differential Equations, 2009, 246(9):3496-3517. [9] YAO Xiaobin, MA Qiaozhen, XU Ling. Global attractors for a Kirchhoff type plate equation with memory[J]. Kodai Mathematical Journal, 2017, 40(1):63-78. [10] LIU Gongwei. The existence general decay and blow-up for a plate equation with nonlinear damping and a logarithmic source term[J]. Electronic Research Archive, 2020, 28(1):263-289. [11] CHUESHOV I, LASIECKA I. Long-time behavior of second order evolution equations with nonlinear damping to appear memoires of AMS-2006[J]. Memoirs of the American Mathematical Society, 2008, 912(912):1-167. [12] Al-GHARABLI M M, MESSAOUDI S A. Existence and a general decay result for a plate equation with nonlinear damping and a logarithmic source term[J]. Journal of Evolution Equations, 2018(8):105-125. [13] YANG Lu, ZHONG Chengkui. Global attractor for plate equation with nonlinear damping[J]. Nonlinear Analysis: Theory Methods and Applications, 2008, 69(11):3802-3810. [14] MA T F, NARCISO V. Global attractor for a model of extensible beam with nonlinear damping and source terms[J]. Nonlinear Analysis: Theory, Methods and Applications, 2010, 73(10):3402-3412. [15] 贾澜,马巧珍. 带强阻尼的Kirchhoff型吊桥方程指数吸引子的存在性[J]. 中国科学(数学), 2018, 48(7):909-922. JIA Lan, MA Qiaozhen. Existence of strong global attractors for strongly damped Kirchoff type suspension bridge equations[J]. Scientia Sinica Mathematics, 2018, 48(7):909-922. [16] 刘世芳,马巧珍. 具有历史记忆的阻尼吊桥方程强全局吸引子的存在性[J]. 数学物理学报,2017, 37A(4):684-697. LIU Shifang, MA Qiaozhen. Existence of strong global attractors for damped suspension bridge equations with history memory[J]. Acta Mathematica Scientia, 2017, 37A(4):684-697. [17] 黄商商,马巧珍. 带线性记忆的阻尼耦合吊桥方程的全局吸引子[J].华东师范大学学报(自然科学版), 2018(2):1-22. HUANG Shangshang, MA Qiaozhen. Global attractors for damped coupled suspension bridge equations with linear memory[J]. Journal of East China Normal University(Natural Science), 2018(2):1-22. [18] SUN Cunyou, CAO Daomin, DUAN Jinqiao. Non-autonomous dynamics of wave equations with nonlinear damping and critical nonlinearity[J]. Nonlinearity, 2006, 19(11):2645-2665. [19] PATA V, ZUCCHI A. Attractors for a damped hyperbolic equation with linear memory[J]. Advances in Mathematical Sciences and Applications, 2001, 11:505-529. [20] NAKAO M. Global attractors for nonlinear wave equations with nonlinear dissipative terms[J]. Journal of Differential Equations, 2006, 227(1):204-229. |
[1] | 杜亚利,汪璇. 带非线性阻尼的非自治Berger方程的时间依赖拉回吸引子[J]. 《山东大学学报(理学版)》, 2021, 56(6): 30-41. |
[2] | 梁霄, 王林山 . 一类S分布时滞递归神经网络的全局吸引子[J]. J4, 2009, 44(4): 57-60 . |
|