《山东大学学报(理学版)》 ›› 2022, Vol. 57 ›› Issue (9): 83-90.doi: 10.6040/j.issn.1671-9352.0.2021.500
孙春杰,张存华*
SUN Chun-jie, ZHANG Cun-hua*
摘要: 考虑带有齐次Neumann边界条件的Beddington-DeAngelis-Tanner型扩散捕食系统。通过分析系统在唯一正常数平衡解处线性化系统的特征值问题,获得该系统正常数平衡解的局部渐近稳定性和Turing不稳定性。用MATLAB软件包对所获得的理论结果进行适当的数值模拟。
中图分类号:
[1] XU Xiaofeng, LIU Ming. Global Hopf bifurcation of a general predator-prey system with diffusion and stage structures[J]. Journal of Differential Equations, 2020, 269(10):8370-8386. [2] TANG Xiaosong, SONG Yongli. Stability, Hopf bifurcations and spatial patterns in a delayed diffusive predator-prey model with herd behavior[J]. Appl Math Comput, 2015, 254:375-391. [3] MANNA D, MAITI A, SAMANTA G P. Analysis of a predator-prey model for exploited fish populations with schooling behavior[J]. Appl Math Comput, 2018, 317:35-48. [4] JIANG Heping. Turing bifurcation in a diffusive predator-prey model with schooling behavior[J]. Appl Math Lette, 2019, 96:230-235. [5] XIA Lei, SUN Jiaojiao, YIN Zuguang, et al. Dynamics and response reshaping of nonlinear predator-prey system undergoing random abrupt disturbances[J]. Applied Mathematics and Mechanics, 2021, 42(8):1123-1134. [6] QIU Shuyuan, MU Chunlai, TU Xinyu. Dynamics for a three-species predator-prey model with density-dependent motilities[J]. Journal of Dynamics and Differential Equations, 2021, 33:1-25. [7] MAY R M. Stability and complexity in model ecosystems[M]. New Jersey: Princeton University Press, 1973: 89-96. [8] TANNER J T. The stability and intrinsic growth rates of prey and predator populations[J]. Ecology, 1975, 56:855-867. [9] YAN Xiangping, ZHANG Cunhua. Stability and turing instability in a diffusive predator-prey system with Beddington-DeAngelis function response[J]. Nonlinear Analysis: Real World Applications, 2014, 20(20):1-13. [10] ARANCIBIA I C, BODE M, FLORES J, et al. Turing patterns in a diffusive Holling-Tanner predator-prey model with an alternative food source for the predator[J]. Communications in Nonlinear Science and Numerical Simulation, 2021, 99:1-15. [11] 程惠东, 侯晓雨.具有Holling-Tanner功能反应的捕食模型研究[J].数学建模及其应用, 2021,10(2):32-43. CHENG Huidong, HOU Xiaoyu. Study on the predator-prey model with Holling-Tanner functional response[J]. Mathematical Modeling and Its Applications, 2021, 10(2):32-43. |
[1] | 周艳,张存华. 具有集群行为的捕食者-食饵反应扩散系统的稳定性和Turing不稳定性[J]. 《山东大学学报(理学版)》, 2021, 56(7): 73-81. |
|