《山东大学学报(理学版)》 ›› 2022, Vol. 57 ›› Issue (4): 91-99.doi: 10.6040/j.issn.1671-9352.0.2021.525
娘毛措,陈占寿*,成守尧,汪肖阳
NIANG Mao-cuo, CHEN Zhan-shou*, CHENG Shou-yao, WANG Xiao-yang
摘要: 基于改进的滑动和(mMOSUM)方法研究了具有长记忆时间序列误差的线性回归模型系数变点的在线监测问题。通过修正边界函数得到了改进的滑动和监测统计量在原假设下的渐近分布,并在备择假设下证明了该方法的一致性。数值模拟结果表明当线性回归模型带有长记忆误差时,改进的滑动和方法除了长记忆参数值较大情况外仍然有效,且变点位置越靠后时,改进方法对经验势提高和平均运行长度缩短的作用越明显。最后,通过对一组美国的宏观经济数据进行实证分析,说明了方法的可行性。
中图分类号:
[1] PAGE E S. Continuous inspection schemes[J]. Biometrika, 1954, 41(1/2):100-115. [2] PAGE E S. Control charts with warning lines[J]. Biometrika, 1955, 42(1/2):243-257. [3] AUE A, HORVÁTH L. Structural breaks in time series[J]. Journal of Time Series Analysis, 2013, 34(1):1-16. [4] JANDHYALA V, FOTOPOULOS S, MACNEILL I, et al. Inference for single and multiple change-points in time series[J]. Journal of Time Series Analysis, 2013, 34(4):423-446. [5] HORVÁTH L, RICE G. Extensions of some classical methods in change point analysis[J]. TEST, 2014, 23(2):219-255. [6] CHU C-S J, STINCHCOMBE M, WHITE H. Monitoring structural change[J]. Econometrica, 1996, 64(5):1045-1065. [7] HORVÁTH L, HUSKOVÁ M, KOKOSZKA P, et al. Monitoring changes in linear models[J]. Journal of Statistical Planning and Inference, 2004, 126(1):225-251. [8] HORVÁTH L, KÜHN M, STEINEBACH J. On the performance of the fluctuation test for structural change[J]. Sequential Analysis, 2008, 27(2):126-140. [9] AUE A, HORVÁTH L, KÜHN M, et al. On the reaction time of moving sum detectors[J]. Journal of Statistical Planning and Inference, 2012, 142(8):2271-2288. [10] CHEN Z S, TIAN Z. Modified procedures for change point monitoring in linear models[J]. Mathematics and Computers in Simulation, 2010, 81(1):62-75. [11] FREMDT S. Page's sequential procedure for change-point detection in time series regression[J]. Statistics, 2015, 49(1):128-155. [12] KIRCH C, WEBER S. Modified sequential change point procedures based on estimating functions[J]. Electronic Journal of Statistics, 2018, 12(1):1579-1613. [13] ZHAO W, XUE Y, LIU X. Monitoring parameter change in linear regression model based on the efficient score vector[J]. Physica A: Statistical Mechanics and its Applications, 2019, 527:121135. [14] LI F X, CHEN Z S, XIAO Y T. Sequential change-point detection in a multinomial logistic regression model[J]. Open Mathematics, 2020, 18(1):807-819. [15] DETTE H, GÖSMANN J. A likelihood ratio approach to sequential change point detection for a general class of parameters[J]. Journal of the American Statistical Association, 2020, 115(531):1361-1377. [16] GÖSMANN J, KLEY T, DETTE H. A new approach for open-end sequential change point monitoring[J]. Journal of Time Series Analysis, 2021, 42(1):63-84. [17] AUE A, HORVÁTH L, HUSKOVÁ M, et al. Change-point monitoring in linear models[J]. The Econometrics Journal, 2006, 9(3):373-403. [18] SCHMITZ A, STEINEBACH J G. A note on the monitoring of changes in linear models with dependent errors[M] //Lecture Notes in Statistics, Berlin, Heideiberg: Springer, 2010, 2010: 159-174. [19] CHEN Z S, XIAO Y T, LI F X. Monitoring memory parameter change-points in long-memory time series[J]. Empirical Economics, 2021, 60(5):2365-2389. [20] TAQQU M S. Weak convergence to fractional Brownian motion and to the rosenblatt process[J]. Probability Theory and Related Fields, 1975, 31(4):287-302. [21] ABADIR K M, DISTASO W, GIRAITIS L. Two estimators of the long-run variance: beyond short memory[J]. Journal of Econometrics, 2009, 150(1):56-70. [22] ABADIR K M, DISTASO W, GIRAITIS L. Nonstationarity-extended local Whittle estimation[J]. Journal of Econometrics, 2007, 141(2):1353-1384. [23] ZEILEIS A, LEISCH F, HORNIK K, et al. Strucchange: an R package for testing for structural change in linear regression models[J]. Journal of Statistical Software, 2002, 7(2):1-38. |
[1] | . 具有AR(2)误差非线性回归模型的联合检验[J]. J4, 2009, 44(7): 38-43. |
|