您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2022, Vol. 57 ›› Issue (4): 91-99.doi: 10.6040/j.issn.1671-9352.0.2021.525

• • 上一篇    下一篇

具有长记忆误差的线性回归模型参数变点的在线监测

娘毛措,陈占寿*,成守尧,汪肖阳   

  1. 青海师范大学数学与统计学院, 青海 西宁 810008
  • 出版日期:2022-04-20 发布日期:2022-03-29
  • 作者简介:娘毛措(1996— ),女,硕士研究生,研究方向为应用数理统计. E-mail:2199459589@qq.com*通信作者简介:陈占寿(1982— ),男,博士,教授,研究方向为应用数理统计. E-mail:chenzhanshou@126.com
  • 基金资助:
    国家自然科学基金资助项目(12161072);青海省自然科学基金资助项目(2019-ZJ-920)

Online monitoring of parameter changes in linear regression model with long memory errors

NIANG Mao-cuo, CHEN Zhan-shou*, CHENG Shou-yao, WANG Xiao-yang   

  1. School of Mathematics and Statistics, Qinghai Normal University, Xining 810008, Qinghai, China
  • Online:2022-04-20 Published:2022-03-29

摘要: 基于改进的滑动和(mMOSUM)方法研究了具有长记忆时间序列误差的线性回归模型系数变点的在线监测问题。通过修正边界函数得到了改进的滑动和监测统计量在原假设下的渐近分布,并在备择假设下证明了该方法的一致性。数值模拟结果表明当线性回归模型带有长记忆误差时,改进的滑动和方法除了长记忆参数值较大情况外仍然有效,且变点位置越靠后时,改进方法对经验势提高和平均运行长度缩短的作用越明显。最后,通过对一组美国的宏观经济数据进行实证分析,说明了方法的可行性。

关键词: 线性回归模型, 长记忆时间序列, 变点监测, 改进的滑动和方法

Abstract: Based on the modified moving-sum-statistic(mMOSUM)method, this paper studies the online monitoring change points of the regression coefficients of linear regression model with long-memory time series errors. Under the null hypothesis, the limit distribution of the mMOSUM monitoring statistics is obtained by modifying the boundary function, and the consistency of the method is proved under the alternative hypothesis. The results of numerical simulation show that when linear regression model has long memory errors, the mMOSUM method is still effective except for the case where the long memory parameter value is larger. And the location of change point moves further back, the effect of modified method on the increase of the power and the reduction of the run length is more obvious. Finally, the feasibility of this method is demonstrated by an empirical analysis of a set of macroeconomic data for the United States.

Key words: linear regression model, long memory time series, change point monitoring, modified moving-sum-statistic(mMOSUM)method

中图分类号: 

  • O212.1
[1] PAGE E S. Continuous inspection schemes[J]. Biometrika, 1954, 41(1/2):100-115.
[2] PAGE E S. Control charts with warning lines[J]. Biometrika, 1955, 42(1/2):243-257.
[3] AUE A, HORVÁTH L. Structural breaks in time series[J]. Journal of Time Series Analysis, 2013, 34(1):1-16.
[4] JANDHYALA V, FOTOPOULOS S, MACNEILL I, et al. Inference for single and multiple change-points in time series[J]. Journal of Time Series Analysis, 2013, 34(4):423-446.
[5] HORVÁTH L, RICE G. Extensions of some classical methods in change point analysis[J]. TEST, 2014, 23(2):219-255.
[6] CHU C-S J, STINCHCOMBE M, WHITE H. Monitoring structural change[J]. Econometrica, 1996, 64(5):1045-1065.
[7] HORVÁTH L, HUSKOVÁ M, KOKOSZKA P, et al. Monitoring changes in linear models[J]. Journal of Statistical Planning and Inference, 2004, 126(1):225-251.
[8] HORVÁTH L, KÜHN M, STEINEBACH J. On the performance of the fluctuation test for structural change[J]. Sequential Analysis, 2008, 27(2):126-140.
[9] AUE A, HORVÁTH L, KÜHN M, et al. On the reaction time of moving sum detectors[J]. Journal of Statistical Planning and Inference, 2012, 142(8):2271-2288.
[10] CHEN Z S, TIAN Z. Modified procedures for change point monitoring in linear models[J]. Mathematics and Computers in Simulation, 2010, 81(1):62-75.
[11] FREMDT S. Page's sequential procedure for change-point detection in time series regression[J]. Statistics, 2015, 49(1):128-155.
[12] KIRCH C, WEBER S. Modified sequential change point procedures based on estimating functions[J]. Electronic Journal of Statistics, 2018, 12(1):1579-1613.
[13] ZHAO W, XUE Y, LIU X. Monitoring parameter change in linear regression model based on the efficient score vector[J]. Physica A: Statistical Mechanics and its Applications, 2019, 527:121135.
[14] LI F X, CHEN Z S, XIAO Y T. Sequential change-point detection in a multinomial logistic regression model[J]. Open Mathematics, 2020, 18(1):807-819.
[15] DETTE H, GÖSMANN J. A likelihood ratio approach to sequential change point detection for a general class of parameters[J]. Journal of the American Statistical Association, 2020, 115(531):1361-1377.
[16] GÖSMANN J, KLEY T, DETTE H. A new approach for open-end sequential change point monitoring[J]. Journal of Time Series Analysis, 2021, 42(1):63-84.
[17] AUE A, HORVÁTH L, HUSKOVÁ M, et al. Change-point monitoring in linear models[J]. The Econometrics Journal, 2006, 9(3):373-403.
[18] SCHMITZ A, STEINEBACH J G. A note on the monitoring of changes in linear models with dependent errors[M] //Lecture Notes in Statistics, Berlin, Heideiberg: Springer, 2010, 2010: 159-174.
[19] CHEN Z S, XIAO Y T, LI F X. Monitoring memory parameter change-points in long-memory time series[J]. Empirical Economics, 2021, 60(5):2365-2389.
[20] TAQQU M S. Weak convergence to fractional Brownian motion and to the rosenblatt process[J]. Probability Theory and Related Fields, 1975, 31(4):287-302.
[21] ABADIR K M, DISTASO W, GIRAITIS L. Two estimators of the long-run variance: beyond short memory[J]. Journal of Econometrics, 2009, 150(1):56-70.
[22] ABADIR K M, DISTASO W, GIRAITIS L. Nonstationarity-extended local Whittle estimation[J]. Journal of Econometrics, 2007, 141(2):1353-1384.
[23] ZEILEIS A, LEISCH F, HORNIK K, et al. Strucchange: an R package for testing for structural change in linear regression models[J]. Journal of Statistical Software, 2002, 7(2):1-38.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨军. 金属基纳米材料表征和纳米结构调控[J]. 山东大学学报(理学版), 2013, 48(1): 1 -22 .
[2] 何海伦, 陈秀兰*. 变性剂和缓冲系统对适冷蛋白酶MCP-01和中温蛋白酶BP-01构象影响的圆二色光谱分析何海伦, 陈秀兰*[J]. 山东大学学报(理学版), 2013, 48(1): 23 -29 .
[3] 赵君1,赵晶2,樊廷俊1*,袁文鹏1,3,张铮1,丛日山1. 水溶性海星皂苷的分离纯化及其抗肿瘤活性研究[J]. J4, 2013, 48(1): 30 -35 .
[4] 孙小婷1,靳岚2*. DOSY在寡糖混合物分析中的应用[J]. J4, 2013, 48(1): 43 -45 .
[5] 杨伦,徐正刚,王慧*,陈其美,陈伟,胡艳霞,石元,祝洪磊,曾勇庆*. RNA干扰沉默PID1基因在C2C12细胞中表达的研究[J]. J4, 2013, 48(1): 36 -42 .
[6] 冒爱琴1, 2, 杨明君2, 3, 俞海云2, 张品1, 潘仁明1*. 五氟乙烷灭火剂高温热解机理研究[J]. J4, 2013, 48(1): 51 -55 .
[7] 杨莹,江龙*,索新丽. 容度空间上保费泛函的Choquet积分表示及相关性质[J]. J4, 2013, 48(1): 78 -82 .
[8] 李永明1, 丁立旺2. PA误差下半参数回归模型估计的r-阶矩相合[J]. J4, 2013, 48(1): 83 -88 .
[9] 董伟伟. 一种具有独立子系统的决策单元DEA排序新方法[J]. J4, 2013, 48(1): 89 -92 .
[10] 任敏1,2,张光辉1. 右半直线上依分布收敛独立随机环境中随机游动的吸收概率[J]. J4, 2013, 48(1): 93 -99 .