《山东大学学报(理学版)》 ›› 2023, Vol. 58 ›› Issue (1): 101-110.doi: 10.6040/j.issn.1671-9352.0.2021.564
• • 上一篇
赵霞1,2,朱钇频1*,杨雅婕3,许澜涛1
ZHAO Xia1,2, ZHU Yi-pin1*, YANG Ya-jie3, XU Lan-tao1
摘要: 考虑到资产收益率间复杂的线性和非线性动态相关及演化关系,基于Pearson相关系数、Kendall秩相关系数和Tail相关系数等构建含时网络并结合随机矩阵理论,研究最优投资策略问题。为了对比不同相依关系、不同中心性测度及是否降噪对投资策略的影响,构建了9个资产筛选网络模型,并基于上证180指数数据,求解最优投资策略,分析其内样本和外样本表现。研究发现:在Kendall和Tail相关系数下的模型所选资产组合可以有更低的交易成本,运用随机矩阵理论进行降噪能显著提升投资收益,含时条件中心性测度的引入有助于筛选出更优的资产组合。
中图分类号:
[1] AMINI H, CONT R, MINCA A. Resilience to contagion in financial networks[J]. Mathematical Finance, 2016, 26(2):329-365. [2] ANAND K, CRAIG B, VON PETER G. Filling in the blanks: network structure and interbank contagion[J]. Quantitative Finance, 2015, 15(4):625-636. [3] BARGIGLI L, DI IASIO G, INFANTE L, et al. The multiplex structure of interbank networks[J]. Quantitative Finance, 2015, 15(4):673-691. [4] NEVEU A R. A survey of network-based analysis and systemic risk measurement[J]. Journal of Economic Interaction and Coordination, 2018, 13(2):241-281. [5] 陈国进,马长峰. 金融危机传染的网络理论研究述评[J]. 经济学动态, 2010(2):116-120. CHEN Guojin, MA Changfeng. A review of network theory research on financial crisis contagion[J]. Economic Perspectives, 2010, 2:116-120. [6] 许忠好,李天奇.基于复杂网络的中国股票市场统计特征分析[J]. 山东大学学报(理学版), 2017, 52(5):41-48. XU Zhonghao, LI Tianqi. Analysison statistical characteristic of Chinese stock market based on complex networks[J]. Journal of Shandong University(Natural Science), 2017, 52(5):41-48. [7] 张兴敏,傅强,张帅,等. 金融系统的网络结构及尾部风险度量: 基于动态半参数分位数回归模型[J]. 管理评论, 2021, 33(4):59-70. ZHANG Xingmin, FU Qiang, ZHANG Shuai, et al. Financial system network contagion structure and tail risk measurement based on dynamic semiparametric quantile regression model[J]. Management Review, 2021, 33(4):59-70. [8] ONNELA J P, CHAKRABORTI A, KASKI K, et al. Dynamics of market correlations: taxonomy and portfolio analysis[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2003, 68:056110. [9] POZZI F, DI MATTEO T, ASTE T. Spread of risk across financial markets: better to invest in the peripheries[J]. Scientific Reports, 2013, 3:1665. [10] PERALTA G, ZAREEI A. A network approach to portfolio selection[J]. Journal of Empirical Finance, 2016, 38:157-180. [11] VYROST T, LYÓCSA S, BAUMÖHL E. Network-based asset allocation strategies[J]. The North American Journal of Economics and Finance, 2019, 47:516-536. [12] LI Y, JIANG X F, TIAN Y, et al. Portfolio optimization based on network topology[J]. Physica A: Statistical Mechanics and Its Applications, 2019, 515:671-681. [13] CLEMENTE G P, GRASSI R, HITAJ A. Asset allocation: new evidence through network approaches[J]. Annals of Operations Research, 2021, 299(1/2):61-80. [14] 陈诗,任卓明,刘闯,等. 时序网络中关键节点的识别方法研究进展[J]. 电子科技大学学报, 2020, 49(2):291-314. CHEN Shi, REN Zhuoming, LIU Chuang, et al. Identification methods of vital nodes on temporal networks[J]. Journal of University of Electronic Science and Technology of China, 2020, 49(2):291-314. [15] KIM H, ANDERSON R. Temporal node centrality in complex networks[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2012, 85:026107. [16] HUANG D W, YU Z G. Dynamic-sensitive centrality of nodes in temporal networks[J]. Scientific Reports, 2017, 7(1):1-11. [17] TAYLOR D, MYERS S A, CLAUSET A, et al. Eigenvector-based centrality measures for temporal networks[J]. Multiscale Modeling & Simulation: a SIAM Interdisciplinary Journal, 2017, 15(1):537-574. [18] HUANG Q J, ZHAO C L, ZHANG X, et al. Centrality measures in temporal networks with time series analysis[J]. EPL(Europhysics Letters), 2017, 118(3):36001. [19] 杨剑楠,刘建国,郭强. 基于层间相似性的时序网络节点重要性研究[J]. 物理学报, 2018, 67(4):048901. YANG Jiannan, LIU Jianguo, GUO Qiang. Node importance idenfication for temporal network based on inter-layer similarity[J]. Acta Physica Sinica, 2018, 67(4):048901. [20] 胡钢,许丽鹏,徐翔.基于时序网络层间同构率动态演化的重要节点辨识[J]. 物理学报, 2021, 70(10):108901. HU Gang, XU Lipeng, XU Xiang. Identification of important nodes based on dynamic evolution of inter-layer isomorphism rate in temporal networks[J]. Acta Physica Sinica, 2021, 70(10):108901. [21] ZHAO L F, WANG G J, WANG M G, et al. Stock market as temporal network[J]. Physica A: Statistical Mechanics and Its Applications, 2018, 506:1104-1112. [22] 韩华,吴翎燕,宋宁宁. 基于随机矩阵的金融网络模型[J]. 物理学报, 2014, 63(13):439-448. HAN Hua, WU Lingyan, SONG Ningning. Financial networks model based on random matrix[J]. Acta Physica Sinica, 2014, 63(13):439-448. [23] 李冰娜,惠晓峰,李连江. 基于蒙特卡洛RMT去噪法小股票组合风险优化研究[J]. 管理科学, 2016, 29(2):134-145. LI Bingna, HUI Xiaofeng, LI Lianjiang. Research on risk optimization of small stock portfolio based on the filtering method of RMT using Monte Carlo simulation[J]. Journal of Management Science, 2016, 29(2):134-145. [24] 谢赤,胡珏,王钢金.基于随机矩阵理论的股市网络拓扑性质研究[J]. 运筹与管理, 2018, 27(1):144-152. XIE Chi, HU Jue, WANG Gangjin. Study on topological property of stock markets network based on random matric method[J]. Operations Research and Management Science, 2018, 27(1):144-152. [25] MANTEGNA R N. Hierarchical structure in financial markets[J]. The European Physical Journal B:Condensed Matter and Complex Systems, 1999, 11(1):193-197. [26] WATTS D J, STROGATZ S H. Collective dynamics of ‘small-world’ networks[J]. Nature, 1998, 393:440-442. [27] WIGNER E P. On the statistical distribution of the widths and spacings of nuclear resonance levels[J]. Mathematical Proceedings of the Cambridge Philosophical Society, 1951, 47(4):790-798. [28] LALOUX L, CIZEAU P, BOUCHAUD J P, et al. Noise dressing of financial correlation matrices[J]. Physical Review Letters, 1999, 83(7):1467-1470. [29] PLEROU V, GOPIKRISHNAN P, ROSENOW B, et al. Random matrix approach to cross correlations in financial data[J]. Physical Review E, 2002, 65(6):066126. [30] SHARIFI S, CRANE M, SHAMAIE A, et al. Random matrix theory for portfolio optimization: a stability approach[J]. Physica A: Statistical Mechanics and Its Applications, 2004, 335(3/4):629-643. [31] KENETT D Y, SHAPIRA Y, BEN-JACOB E. RMT assessments of the market latent information embedded in the stocks raw, normalized, and partial correlations[J]. Journal of Probability and Statistics, 2009, 72:657-669. |
[1] | 吕小妮1,王艳彩2,高岳林2. BVaR风险度量下限制性卖空的单位风险收益最大投资组合模型[J]. J4, 2013, 48(05): 92-96. |
[2] | 崔玉泉1,马立杰2,赵晶3,白金燕4. DEA方法在投资组合中的应用[J]. J4, 2011, 46(2): 82-88. |
[3] | 安起光,王厚杰 . 基于机会约束的均值—VaR投资组合模型再研究[J]. J4, 2006, 41(2): 94-100 . |
|