《山东大学学报(理学版)》 ›› 2022, Vol. 57 ›› Issue (4): 100-110.doi: 10.6040/j.issn.1671-9352.0.2021.622
• • 上一篇
安翔,郭精军*
AN Xiang, GUO Jing-jun*
摘要: 基于混合次分数布朗运动和Poisson过程,建立了具有交易费用的欧式回望期权定价模型。首先,利用Δ-对冲原理得到了该期权价格所满足的非线性偏微分方程,并通过构造Crank-Nicolson格式求得其数值解。然后,验证了该数值解的有效性,并讨论了交易费用、波动率与无风险利率等对期权价值的影响。最后,选取浦东发展银行的日收盘价进行模拟分析,结果表明:基于混合次分数跳扩散模型的模拟价格更加接近股票的真实值,能够更好地反映股票的整体走势。
中图分类号:
[1] GOLDMAN M B, SOSIN H B, GATTO M A. Path dependent options: “buy at the low, sell at the high”[J]. The Journal of Finance, 1979, 34(5):1111-1127. [2] BROADIE M, GLASSERMAN P, KOU S G. Connecting discrete and continuous path-dependent options[J]. Finance and Stochastics, 1999, 3(1):55-82. [3] BUCHEN P, KONSTANDATOS O. A new method of pricing lookback options[J]. Mathematical Finance, 2005, 15(2):245-259. [4] SUN L. Pricing currency options in the mixed fractional Brownian motion [J]. Physica A:Statistical Mechanics and its Applications, 2013, 392(16):3441-3458. [5] ROSTEK S, SCHÖBEL R. A note on the use of fractional Brownian motion for financial modeling[J]. Economic Modelling, 2013, 30:30-35. [6] SHOKROLLAHI F. Mixed fractional Merton model to evaluate European options with transaction costs[J]. Journal of Mathematical Finance, 2018, 8(4):623-639. [7] YANG Z Q. Default probability of American lookback option in a mixed jump-diffusion model[J]. Physica A: Statistical Mechanics and its Applications, 2020, 540:1-12. [8] CHEN Q, ZHANG Q, LIU C. The pricing and numerical analysis of lookback options for mixed fractional Brownian motion [J]. Chaos, Solitons & Fractals, 2019, 128:123242. [9] MERTON R C. Option pricing when underlying stock returns are discontinuous [J]. Journal of Financial Economics, 1976, 3(1/2):125-144. [10] XIAO W L, ZHANG W G, ZHANG X L, et al. Pricing currency options in a fractional Brownian motion with jumps[J]. Economic Modelling, 2010, 27(5):935-942. [11] SHOKROLLAHI F, KılıçMAN A. Actuarial approach in a mixed fractional Brownian motion with jumps environment for pricing currency option[J]. Advances in Difference Equations, 2015, 2015(1):257. [12] 彭波,郭精军.在跳环境和混合高斯过程下的资产定价及模拟[J]. 山东大学学报(理学版), 2020, 55(5):105-113. PENG Bo, GUO Jingjun. Asset pricing and simulation under the environment of jumping and mixed Gaussian process[J]. Journal of Shandong University(Natural Science), 2020, 55(5):105-113. [13] KIM K I, PARK H S, QIAN X S. A mathematical modeling for the lookback option with jump-diffusion using binomial tree method[J]. Journal of Computational and Applied Mathematics, 2011, 235(17):5140-5154. [14] 杨朝强.一类特殊混合跳扩散Black-Scholes模型的欧式回望期权定价[J].数学物理学报, 2019, 39A(6): 1514-1531. YANG Zhaoqiang. Pricing European lookback option in a special kind of mixed jump-diffusion Black-Scholes model[J]. Acta Mathematica Scientia, 2019, 39A(6):1514-1531. [15] LELAND H E. Option pricing and replication with transactions costs[J]. The Journal of Finance, 1985, 40(5):1283-1301. [16] WANG X T. Scaling and long-range dependence in option pricing I: pricing European option with transaction costs under the fractional Black-Scholes model[J]. Physica A: Statistical Mechanics and its Applications, 2010, 389(3):438-444. [17] WANG X T, ZHU E H, TANG M M, et al. Scaling and long-range dependence in option pricing II: Pricing European option with transaction costs under the mixed Brownian fractional-Brownian model[J]. Physica A: Statistical Mechanics and its Applications, 2010, 389(3):445-451. [18] LESMANA D C, WANG S. An upwind finite difference method for a nonlinear Black-Scholes equation governing European option valuation under transaction costs[J]. Applied Mathematics and Computation, 2013, 219(16):8811-8828. [19] 肖炜麟,张卫国,徐维军. 次分数布朗运动下带交易费用的备兑权证定价[J]. 中国管理科学, 2014, 22(5):1-7. XIAO Weilin, ZHANG Weiguo, XU Weijun. Pricing covered warrants in a sub-fractional Brownian motion with transaction costs[J]. Chinese Journal of Management Science, 2014, 22(5):1-7. [20] SUN J J, ZHOU S, ZHANG Y, et al. Lookback option pricing with fixed proportional transaction costs under fractional Brownian motion[J]. International Scholarly Research Notices, 2014, 2014:1-7. [21] 陈海珍,周圣武,孙祥艳. 混合分数布朗运动下的回望期权定价[J]. 华东师范大学学报(自然科学版), 2018(4):47-58. CHEN Haizhen, ZHOU Shengwu, SUN Xiangyan. Pricing of lookback options under a mixed fractional Brownian movement[J]. Journal of East China Normal University(Natural Science), 2018(4):47-58. [22] CHARLES E N, MOUNIR Z. On the sub-mixed fractional Brownian motion[J]. Applied Mathematics-A Journal of Chinese Universities, 2015, 30(1):27-43. |
[1] | 杨彩杰,孙同军. 抛物型最优控制问题的Crank-Nicolson差分方法[J]. 《山东大学学报(理学版)》, 2020, 55(6): 115-121. |
[2] | 杨朝强. 一类混合跳-扩散分数布朗运动的欧式回望期权定价[J]. J4, 2013, 48(6): 67-74. |
[3] | 杨朝强. 混合分数布朗运动下一类欧式回望期权定价[J]. J4, 2012, 47(9): 105-109. |
[4] | 苗杰1,师恪2,蔡华1. 跳扩散模型下的可分离债券的定价[J]. J4, 2010, 45(8): 109-117. |
[5] | 张新东 胡月宏. 同伦分析方法求具有边界条件的扩散方程的精确解[J]. J4, 2008, 43(12): 73-76. |
|