您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2022, Vol. 57 ›› Issue (4): 100-110.doi: 10.6040/j.issn.1671-9352.0.2021.622

• • 上一篇    

混合次分数跳扩散模型下回望期权的定价及模拟

安翔,郭精军*   

  1. 兰州财经大学统计学院, 甘肃 兰州 730020
  • 发布日期:2022-03-29
  • 作者简介:安翔(1997— ),男,硕士研究生,研究方向为金融统计与风险管理. E-mail:ax3025@126.com*通信作者简介:郭精军(1976— ),男,博士,教授,博士生导师,研究方向为金融统计与风险管理. E-mail:guojj@lzufe.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(71961013);甘肃省教育厅“双一流”科研重点项目(GSSYLXM-06);甘肃省飞天学者计划

Pricing and simulation of lookback options under the mixed sub-fractional jump-diffusion model

AN Xiang, GUO Jing-jun*   

  1. School of Statistics, Lanzhou University of Finance and Economics, Lanzhou 730020, Gansu, China
  • Published:2022-03-29

摘要: 基于混合次分数布朗运动和Poisson过程,建立了具有交易费用的欧式回望期权定价模型。首先,利用Δ-对冲原理得到了该期权价格所满足的非线性偏微分方程,并通过构造Crank-Nicolson格式求得其数值解。然后,验证了该数值解的有效性,并讨论了交易费用、波动率与无风险利率等对期权价值的影响。最后,选取浦东发展银行的日收盘价进行模拟分析,结果表明:基于混合次分数跳扩散模型的模拟价格更加接近股票的真实值,能够更好地反映股票的整体走势。

关键词: 混合次分数布朗运动, 跳扩散模型, 欧式回望期权, 交易费, Crank-Nicolson格式

Abstract: The pricing model of European lookback options with transaction costs is established based on the mixed sub-fractional Brownian motion and Poisson process. Firstly, the nonlinear partial differential equation satisfied by the price of the option is obtained using the Delta hedging principle, and its numerical solution is obtained by constructing a Crank-Nicolson format. Secondly, the validity of the numerical method is verified, and the effects of transaction costs, volatility and risk-free interest rate on the value of the option are respectively discussed. Finally, the daily closing price of Shanghai Pudong Development Bank is selected for the simulation, and the results show that the simulated price based on the mixed sub-fractional jump-diffusion model is closer to the real value of the stock, and can better reflect the overall stock trend.

Key words: mixed sub-fractional Brownian motion, jump-diffusion model, European lookback options, transaction costs, Crank-Nicolson format

中图分类号: 

  • O211.6
[1] GOLDMAN M B, SOSIN H B, GATTO M A. Path dependent options: “buy at the low, sell at the high”[J]. The Journal of Finance, 1979, 34(5):1111-1127.
[2] BROADIE M, GLASSERMAN P, KOU S G. Connecting discrete and continuous path-dependent options[J]. Finance and Stochastics, 1999, 3(1):55-82.
[3] BUCHEN P, KONSTANDATOS O. A new method of pricing lookback options[J]. Mathematical Finance, 2005, 15(2):245-259.
[4] SUN L. Pricing currency options in the mixed fractional Brownian motion [J]. Physica A:Statistical Mechanics and its Applications, 2013, 392(16):3441-3458.
[5] ROSTEK S, SCHÖBEL R. A note on the use of fractional Brownian motion for financial modeling[J]. Economic Modelling, 2013, 30:30-35.
[6] SHOKROLLAHI F. Mixed fractional Merton model to evaluate European options with transaction costs[J]. Journal of Mathematical Finance, 2018, 8(4):623-639.
[7] YANG Z Q. Default probability of American lookback option in a mixed jump-diffusion model[J]. Physica A: Statistical Mechanics and its Applications, 2020, 540:1-12.
[8] CHEN Q, ZHANG Q, LIU C. The pricing and numerical analysis of lookback options for mixed fractional Brownian motion [J]. Chaos, Solitons & Fractals, 2019, 128:123242.
[9] MERTON R C. Option pricing when underlying stock returns are discontinuous [J]. Journal of Financial Economics, 1976, 3(1/2):125-144.
[10] XIAO W L, ZHANG W G, ZHANG X L, et al. Pricing currency options in a fractional Brownian motion with jumps[J]. Economic Modelling, 2010, 27(5):935-942.
[11] SHOKROLLAHI F, KılıçMAN A. Actuarial approach in a mixed fractional Brownian motion with jumps environment for pricing currency option[J]. Advances in Difference Equations, 2015, 2015(1):257.
[12] 彭波,郭精军.在跳环境和混合高斯过程下的资产定价及模拟[J]. 山东大学学报(理学版), 2020, 55(5):105-113. PENG Bo, GUO Jingjun. Asset pricing and simulation under the environment of jumping and mixed Gaussian process[J]. Journal of Shandong University(Natural Science), 2020, 55(5):105-113.
[13] KIM K I, PARK H S, QIAN X S. A mathematical modeling for the lookback option with jump-diffusion using binomial tree method[J]. Journal of Computational and Applied Mathematics, 2011, 235(17):5140-5154.
[14] 杨朝强.一类特殊混合跳扩散Black-Scholes模型的欧式回望期权定价[J].数学物理学报, 2019, 39A(6): 1514-1531. YANG Zhaoqiang. Pricing European lookback option in a special kind of mixed jump-diffusion Black-Scholes model[J]. Acta Mathematica Scientia, 2019, 39A(6):1514-1531.
[15] LELAND H E. Option pricing and replication with transactions costs[J]. The Journal of Finance, 1985, 40(5):1283-1301.
[16] WANG X T. Scaling and long-range dependence in option pricing I: pricing European option with transaction costs under the fractional Black-Scholes model[J]. Physica A: Statistical Mechanics and its Applications, 2010, 389(3):438-444.
[17] WANG X T, ZHU E H, TANG M M, et al. Scaling and long-range dependence in option pricing II: Pricing European option with transaction costs under the mixed Brownian fractional-Brownian model[J]. Physica A: Statistical Mechanics and its Applications, 2010, 389(3):445-451.
[18] LESMANA D C, WANG S. An upwind finite difference method for a nonlinear Black-Scholes equation governing European option valuation under transaction costs[J]. Applied Mathematics and Computation, 2013, 219(16):8811-8828.
[19] 肖炜麟,张卫国,徐维军. 次分数布朗运动下带交易费用的备兑权证定价[J]. 中国管理科学, 2014, 22(5):1-7. XIAO Weilin, ZHANG Weiguo, XU Weijun. Pricing covered warrants in a sub-fractional Brownian motion with transaction costs[J]. Chinese Journal of Management Science, 2014, 22(5):1-7.
[20] SUN J J, ZHOU S, ZHANG Y, et al. Lookback option pricing with fixed proportional transaction costs under fractional Brownian motion[J]. International Scholarly Research Notices, 2014, 2014:1-7.
[21] 陈海珍,周圣武,孙祥艳. 混合分数布朗运动下的回望期权定价[J]. 华东师范大学学报(自然科学版), 2018(4):47-58. CHEN Haizhen, ZHOU Shengwu, SUN Xiangyan. Pricing of lookback options under a mixed fractional Brownian movement[J]. Journal of East China Normal University(Natural Science), 2018(4):47-58.
[22] CHARLES E N, MOUNIR Z. On the sub-mixed fractional Brownian motion[J]. Applied Mathematics-A Journal of Chinese Universities, 2015, 30(1):27-43.
[1] 杨彩杰,孙同军. 抛物型最优控制问题的Crank-Nicolson差分方法[J]. 《山东大学学报(理学版)》, 2020, 55(6): 115-121.
[2] 杨朝强. 一类混合跳-扩散分数布朗运动的欧式回望期权定价[J]. J4, 2013, 48(6): 67-74.
[3] 杨朝强. 混合分数布朗运动下一类欧式回望期权定价[J]. J4, 2012, 47(9): 105-109.
[4] 苗杰1,师恪2,蔡华1. 跳扩散模型下的可分离债券的定价[J]. J4, 2010, 45(8): 109-117.
[5] 张新东 胡月宏. 同伦分析方法求具有边界条件的扩散方程的精确解[J]. J4, 2008, 43(12): 73-76.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!