《山东大学学报(理学版)》 ›› 2023, Vol. 58 ›› Issue (11): 165-174.doi: 10.6040/j.issn.1671-9352.0.2022.062
• • 上一篇
Ranran WANG(),Fei WEN*(),Shucheng ZHANG
摘要:
首先定义了一类新图——类似门槛图, 然后结合算法设计得到了这类图的广义特征多项式(即Φ-谱), 从而推出了一类门槛图的Φ-特征多项式及其谱。作为应用, 还构造了一些Φ-同谱无穷类。
中图分类号:
1 |
VAN DAM E R , HAEMERS W H . Which graphs are determined by their spectrum?[J]. Linear Algebra and Its Applications, 2003, 373, 241- 272.
doi: 10.1016/S0024-3795(03)00483-X |
2 | CVETKOVIC D M , DOOB M , SACHS H . Spectra of graphs, 87: theory and application[M]. New York: Academic Press, 1997. |
3 |
WANG W , LI F , LU H L , et al. Graphs determined by their generalized characteristic polynomials[J]. Linear Algebra and Its Applications, 2011, 434 (5): 1378- 1387.
doi: 10.1016/j.laa.2010.11.024 |
4 |
WANG W , MAO L H , LU H L . On bi-regular graphs determined by their generalized characteristic polynomials[J]. Linear Algebra and Its Applications, 2013, 438 (7): 3076- 3084.
doi: 10.1016/j.laa.2012.12.006 |
5 |
WANG Wei , XU Chengxian . An excluding algorithm for testing whether a family of graphs are determined by their generalized spectra[J]. Linear Algebra and Its Applications, 2006, 418 (1): 62- 74.
doi: 10.1016/j.laa.2006.01.016 |
6 | WANG W . Generalized spectral characterization of graphs revisited[J]. The Electronic Journal of Combinatorics, 2013, 20 (4): 823- 840. |
7 |
KIM D , KIM H K , LEE J . Generalized characteristic polynomials of graph bundles[J]. Linear Algebra and Its Applications, 2008, 429 (4): 688- 697.
doi: 10.1016/j.laa.2008.03.023 |
8 | BROUWER A E , HAEMERS W H . Spectra of graphs[M]. New York: Springer, 2011. |
9 | CHVÁTAL V , HAMMER P L . Aggregation of inequalities in integer programming[M]. Amsterdam: Elsevier, 1977: 145- 162. |
10 |
HENDERSON P B , ZALCSTEIN Y . A graph-theoretic characterization of the PV class of synchronizing primitives[J]. SIAM Journal on Computing, 1977, 6 (1): 88- 108.
doi: 10.1137/0206008 |
11 |
HAGBERG A , SWART P J , SCHULT D A . Designing threshold networks with given structural and dynamical properties[J]. Physical Review E, 2006, 74 (5): 056116.
doi: 10.1103/PhysRevE.74.056116 |
12 |
BANERJEE A , MEHATARI R . On the normalized spectrum of threshold graphs[J]. Linear Algebra and Its Applications, 2017, 530, 288- 304.
doi: 10.1016/j.laa.2017.05.007 |
13 |
BAPAT R B . On the adjacency matrix of a threshold graph[J]. Linear Algebra and Its Applications, 2013, 439 (10): 3008- 3015.
doi: 10.1016/j.laa.2013.08.007 |
14 | BAPAT R B . Laplacian eigenvalues of threshold graphs[M]. London: Springer, 2014: 145- 155. |
15 | HAMMER P L , KELMANS A K . Laplacian spectra and spanning trees of threshold graphs[J]. Discrete Applied Mathematics, 1996, 65 (1/3): 255- 273. |
16 |
JACOBS D P , TREVISAN V , TURA F . Computing the characteristic polynomial of threshold graphs[J]. Journal of Graph Algorithms and Applications, 2014, 18 (5): 709- 719.
doi: 10.7155/jgaa.00342 |
17 | MAHADEV N V , PELED U N . Threshold graphs and related topics[M]. Amsterdam: Elsevier, 1995. |
18 |
LIU Fenjin , SIEMONS J , WANG Wei . New families of graphs determined by their generalized spectrum[J]. Discrete Mathematics, 2019, 342 (4): 1108- 1112.
doi: 10.1016/j.disc.2018.12.020 |
19 | 唐达. 三对角矩阵计算[J]. 高等学校计算数学学报, 1997, (2): 97- 104. |
TANG Da . Tridiagonal matrix calculus[J]. Journal of Computational Mathematics in Colleges and Universities, 1997, (2): 97- 104. | |
20 |
刘长河, 汪元伦, 刘世祥. 用解线性方程组方法求三对角矩阵的逆及其应用[J]. 北京建筑工程学院学报, 2005, 21 (3): 59- 62.
doi: 10.3969/j.issn.1004-6011.2005.03.015 |
LIU Changhe , WANG Yuanlun , LIU Shixiang . Find the inverse matrix of tridiagonal matrix by solving systems of linear algebraic equations[J]. Journal of Beijing Institute of Civil Engineering and Architecture, 2005, 21 (3): 59- 62.
doi: 10.3969/j.issn.1004-6011.2005.03.015 |
|
21 | ZHANG F Z . The Schur complement and its applications[M]. New York: Springer Science, 2005. |
[1] | 杨影,李沐春,张友. 剖分Q-邻接冠图的广义特征多项式及其应用[J]. 《山东大学学报(理学版)》, 2021, 56(7): 65-72. |
|