您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2022, Vol. 57 ›› Issue (9): 1-14.doi: 10.6040/j.issn.1671-9352.0.2022.131

• •    下一篇

逆分离模糊集合((-overA)F,(-overA)(-overF))与模糊信息安全获取

李守伟1,史开泉2*   

  1. 1.山东师范大学商学院, 山东 济南 250014;2.山东大学数学学院, 山东 济南 250100
  • 发布日期:2022-09-15
  • 作者简介:李守伟(1970— ),男,教授,博士生导师,研究方向为复杂网络与智能算法. E-mail:shouweili1996@163.com*通信作者简介:史开泉(1945— ),男,教授,博士生导师,研究方向为模糊集合理论与应用、信息融合理论与数学交叉研究. E-mail:shikq@sdu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(71663010);山东省自然科学基金资助项目(ZR2019MG015)

Inverse separated fuzzy set ((-overA)F,(-overA)(-overF)) and secure acquisition of fuzzy information

LI Shou-wei1, SHI Kai-quan2*   

  1. 1. School of Business, Shandong Normal University, Jinan 250014, Shandong, China;
    2. School of Mathematics, Shandong University, Jinan 250100, Shandong, China
  • Published:2022-09-15

摘要: 利用论域的动态特征, 给出了具有属性析取特征的、由内逆-分离模糊集合与外逆-分离模糊集合共同构成的逆分离模糊集合,进而给出了逆分离模糊集合之间的模糊距离;基于逆分离模糊集合的生成,给出了模糊信息关系,进而给出了逆模糊信息智能伪装及其智能获取算法;结合椭圆曲线,给出了逆模糊信息内-伪装安全获取算法在商业领域的应用。

关键词: 属性析取, 逆分离模糊集合, 椭圆曲线, 信息安全, 智能算法, 应用

Abstract: By using the dynamic characteristics of universe, the inverse separated fuzzy set with attribute disjunctive characteristics is given, which is composed of internal inverse separated fuzzy set and outer inverse separated fuzzy set, and then the fuzzy distance between inverse separated fuzzy sets is also given; Based on the generation of inverse separated fuzzy set, the relationship of fuzzy information is given, and then the intelligent camouflage and intelligent acquisition algorithm of inverse fuzzy information are given; Combined with elliptic curve, the application of internal camouflage security acquisition algorithm of inverse fuzzy information is given in commercial field.

Key words: attribute disjunction, inverse separated fuzzy set, elliptic curve, information security, intelligent algorithm, application

中图分类号: 

  • O144
[1] ZADEH L A. Fuzzy sets[J]. Information and Control, 1965, 8(3):338-353.
[2] ZADEH L A. Probability measures of fuzzy events[J]. Journal of Mathematical Analysis and Applications, 1968, 23(2):421-427.
[3] ZADEH L A. Similarity relations and fuzzy orderings[J]. Information Sciences, 1971, 3(2):177-200.
[4] 史开泉, 崔玉泉. 双枝模糊决策与决策加密-认证[J]. 中国科学: E, 2003, 33(2):154-163. SHI Kaiquan, CUI Yuquan. Both-branch fuzzy secision and decision encryption-authentication[J]. Science in China Series E, 2003, 33(2):154-163.
[5] SHI Kaiquan, CUI Yuquan. Both-branch fuzzy decision and decision encryption-authentication[J]. Science in China Series F, 2003, 46(2):90-103.
[6] SHI K Q, NG DAVID K W. Computation of fuzzy transitive clasure by S-K-Q-Δ method[J]. The Journal of Fuzzy Mathematics, 1993, 1(1):25-32.
[7] 史开泉,汪保明. Fuzzy传递闭包与Fuzzy分类矩阵的S-K-Q判定定理[J]. 模糊系统与数学, 1990, 4(2):92-97. SHI Kaiquan, WANG Baoming. S-K-Q critical theorems for fuzzy transitive closure R* and fuzzy classifying matrix R[J]. Fuzzy Systems and Mathematics, 1990, 4(2):92-97.
[8] MOLINA C, RUIZ M D, SERRANO J M. Representation by levels: an alternative to fuzzy sets for fuzzy data mining[J]. Fuzzy Sets and Systems, 2020, 401:113-132.
[9] HUITZIL I, BOBILLO F, GÓMEZ-ROMERO J, et al. Fudge: fuzzy ontology building with consensuated fuzzy datatypes[J]. Fuzzy Sets and Systems, 2020, 401:91-112.
[10] DALTERIO P, GARIBALDI J M, JOHN R, et al. Constrained interval type-2 fuzzy sets[J]. IEEE Transactions on Fuzzy Systems, 2021, 29(5):1212-1225.
[11] DONG Q, GONG S, ZHU X. Imbalanced deep learning by minority class incremental rectification[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2019, 41(6):1367-1381.
[12] MATHEW J, PANG C, LUO M, et al. Classification of imbalanced data by oversampling in kernel space of support vector machines[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(9):4065-4076.
[13] GAO M, HONG X, HARRIS C. Construction of neurofuzzy models for imbalanced data classification[J]. IEEE Transactions on Fuzzy Systems, 2014, 22(6):1472-1488.
[14] LIU S, ZHANG J, XIANG Y, et al. Fuzzy-based information decomposition for incomplete and imbalanced data learning[J]. IEEE Transactions on Fuzzy Systems, 2017, 25(6):1476-1490.
[15] RAMENTOL E, VLUYMANS S, VERBIEST N, et al. IFROWANN:imbalanced fuzzy-rough ordered weighted average nearest neighbor classification[J]. IEEE Transactions on Fuzzy Systems, 2015, 23(5):1622-1637.
[16] RI J H, LIU L, LIU Y, et al. Optimal weighted extreme learning machine for imbalanced learning with differential evolution[J]. IEEE Computational Intelligence Magazine, 2018, 13(3):32-47.
[17] MANGASARIAN O, MUSICANT D. Lagrangian support vector machines[J]. Journal of Machine Learning Research, 2001, 1(1):161-177.
[18] SUYKENS J, VANDEWALLE J. Least squares support vector machine classifiers[J]. Neural Processing Letters, 1999, 9(3):293-300.
[19] TSANG I, KWOK J, CHEUNG P M. Core vector machines:fast SVM training on very large data sets[J]. Journal of Machine Learning Research, 2005, 6(1):363-392.
[20] TSANG I W H, KWOK J T Y, ZURADA J. Generalized core vector machines[J]. IEEE Transactions on Neural Networks, 2006, 17(5):1126-1142.
[21] TSANG I, KOCSOR A, KWOK J T Y. Large-scale maximum margin discriminant analysis using core vector machines[J]. IEEE Transactions on Neural Networks, 2008, 19(4):610-623.
[22] ANGELOV P P, ZHOU X. Evolving fuzzy-rule-based classifiers from data streams[J]. IEEE Transactions on Fuzzy Systems, 2008, 16(6):1462-1475.
[23] LESKI J. An ε-margin nonlinear classifier based on if-then rules[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B, Cybernetics, 2004, 34(1):68-76.
[24] LUGHOFER E, BUCHTALA O. Reliable all-pairs evolving fuzzy classifiers[J]. IEEE Transactions on Fuzzy Systems, 2013, 21(4):625-641.
[25] YANG X, ZHANG G, LU J, et al. A kernel fuzzy c-means clustering-based fuzzy support vector machine algorithm for classification problems with outliers or noises[J]. IEEE Transactions on Fuzzy Systems, 2011, 19(1):105-115.
[26] LESKI J. Fuzzy(c+p)-means clustering and its application to a fuzzy rule-based classifier: towards good generalization and good interpretability[J]. IEEE Transactions on Fuzzy Systems, 2015, 23(4):802-812.
[27] HSU C W, LIN C J. A comparison of methods for multiclass support vector machines[J]. IEEE Transactions on Neural Networks, 2002, 13(2):415-425.
[28] PEDRYCZ W. Fuzzy set technology in knowledge discovery[J]. Fuzzy Sets and Systems, 1998, 98(2):279-290.
[29] PEDRYCZ W. Cluster-centric fuzzy modeling[J]. IEEE Transactions on Fuzzy Systems, 2014, 22(6):1585-1597.
[30] LESKI J. Fuzzy c-ordered-means clustering[J]. Fuzzy Sets System, 2016, 286(1):114-133.
[31] LESKI J, KOTAS M. Linguistically defined clustering of data[J]. International Journal of Applied Mathematics and Computer Science, 2018, 28(3):545-557.
[32] 史开泉. 逆P-集合[J]. 山东大学学报(理学版), 2012, 47(1):98-109. SHI Kaiquan. Inverse P-sets[J]. Journal of Shandong University(Natural Science), 2012, 47(1):98-109.
[33] 史开泉. P-集合,逆P-集合与信息智能融合-过滤辨识[J]. 计算机科学, 2012, 39(4):1-13. SHI Kaiquan. P-sets, inverse P-sets and the intelligent fusion-filter identification of information[J]. Computer Science, 2012, 39(4):1-13.
[34] 史开泉. P-集合[J]. 山东大学学报(理学版), 2008, 43(11):77-84. SHI Kaiquan. P-sets[J]. Journal of Shandong University(Natural Science), 2008, 43(11):77-84.
[35] SHI K Q. P-sets and its applications[J]. Advances in Systems Science and Applications, 2009, 9(2):209-219.
[36] 史开泉, 函数P-集合[J]. 山东大学学报(理学版), 2011, 46(2):62-69. SHI Kaiquan. Function P-sets[J]. Journal of Shandong University(Natural Science), 2011, 46(2):62-69.
[37] SHI K Q. Function P-sets[J]. International Journal of Machine Learning and Cybernetics, 2011, 2(4):281-288.
[38] 史开泉. 函数逆P-集合与信息规律融合[J]. 山东大学学报(理学版), 2012, 47(8):73-80. SHI Kaiquan. Function inverse P-sets and information law fusion[J]. Journal of Shandong University(Natural Science), 2012, 47(8):73-80.
[39] FAN C X, LIN H K. P-sets and the reasoning-identification of disaster information[J]. International Journal of Convergence Information Technology, 2012, 7(1):337-345.
[40] LIN H K, FAN C X. The dual form of P-reasoning and identification of unknown attribute[J]. International Journal of Digital Content Technology and Its Applications, 2012, 6(1):121-131.
[41] TANG J H, ZHANG L, SHI K Q. Outer P-information law reasoning and its application in intelligent fusion and separating of information law[J]. Microsystem Technologies, 2018, 24(10):4389-4398.
[42] 史开泉. 大数据结构-逻辑特征与大数据规律[J]. 山东大学学报(理学版), 2019, 54(2):1-29. SHI Kaiquan. Big data structure-logic characteristics and big data law[J]. Journal of Shandong University(Natural Science), 2019, 54(2):1-29.
[43] 刘纪芹, 史开泉. 大数据分解-融合及其智能获取[J]. 计算机科学, 2020, 47(6):66-73. LIU Jiqin, SHI Kaiquan. Big data decomposition-fusion and its intelligent acquisition[J]. Computer Science, 2020, 47(6):66-73.
[44] 郝秀梅, 史开泉. 大数据智能检索与大数据区块元智能分离[J]. 计算机科学, 2020, 47(11):113-121. HAO Xiumei, SHI Kaiquan. Big data intelligent retrieval and big data block element intelligence separation[J]. Computer Science, 2020, 47(11):113-121.
[45] LI S W, XIAO Y, SHI K Q. Dynamic boundary of P-set and intelligent acquisition for two types of information fusion[J]. Computers, 2020, 9(1):3-17.
[46] LI S W, YOU Z J. Information intelligent acquisition generated by matrix reasoning of inverse P-set[C] // Simulation Tools and Techniques: 12th EAI International Conference, SIMUtools 2020, Part II. Guiyang: Springer International Publishing, 2021: 399-408.
[47] PAWLAK Z. Rough sets[J]. International Journal of Computer and Information Sciences, 1982, 11(5):341-356.
[48] 史开泉,姚炳学. 函数S-粗集与规律辨识[J]. 中国科学(E辑:信息科学), 2008, 38(4):553-564. SHI Kaiquan, YAO Bingxue. Function S-rough sets and security-authentication of hiding law[J]. Science in China(Series E: Information Sciences), 2008, 38(4):553-564.
[49] SHI K Q, YAO B X. Function S-rough sets and law identification[J]. Science in China( Series F: Information Sciences), 2008, 51(5):499-510.
[50] 史开泉,赵建立. 函数S-粗集与隐藏规律安全认证[J]. 中国科学(E辑:信息科学), 2008, 38(8):1234-1243. SHI Kaiquan, ZHAO Jianli. Function S-rough sets and security-authentication of hiding law[J]. Scinence in China(Series E: Information Sciences), 2008, 38(8):1234-1243.
[51] SHI K Q, ZHAO J L. Function S-rough sets and security-authentication of hiding law[J]. Scinence in China( Series F: Information Sciences), 2008, 51(7):924-935.
[52] WEI W, LIANG J Y. Information fusion in rough set theory:an overview[J]. Information Fusion, 2019, 48(8):107-118.
[53] WANG H J, ZHANG Q. Dynamic identification of coal-rock interface based on adaptive weight optimization and multi-sensor information fusion[J]. Information Fusion, 2019, 51(11):114-128.
[54] WANG H, XU Z S, ZENG X J. Hesitant fuzzy linguistic term sets for linguistic decision making: current developments, issues and challenges[J]. Information Fusion, 2018, 43(9):1-12.
[55] ZHANG S, XU Z S, HE Y. Operations and integrations of probabilistic hesitant fuzzy information in decision making[J]. Information Fusion, 2017, 38(11):1-11.
[56] WANG H, XU Z S. Admissible orders of typical hesitant fuzzy elements and their application in ordered information fusion in multi-criteria decision making[J]. Information Fusion, 2016, 29(5):98-104.
[57] KOBLITZ N. Elliptic curve cryptosystems[J]. Mathematics of Computation, 1987, 48(177):203-209.
[58] MENEZES A J, VANSTONE S A. Elliptic curve cryptosystems and their implementation[J]. J Cryptology, 1993, 6(4):209-224.
[1] 史开泉,李守伟. 分离模糊集合(A(-overF),AF)与模糊信息智能融合[J]. 《山东大学学报(理学版)》, 2022, 57(7): 1-13.
[2] 李瑞峰,易铮阁,袁文勇,杨晓元,钮可. 基于ECDSA的云存储审计方案[J]. 《山东大学学报(理学版)》, 2022, 57(5): 57-65.
[3] 徐江珮,王晋,刘畅,周亮,龙凤. 电动汽车充电桩CAN总线协议的安全检测[J]. 《山东大学学报(理学版)》, 2020, 55(5): 95-104.
[4] 李颖,胡俊. 基于分布式消息驱动的分层可信密码服务框架[J]. 《山东大学学报(理学版)》, 2020, 55(3): 19-27.
[5] 李妮,关焕梅,杨飘,董文永. 基于BERT-IDCNN-CRF的中文命名实体识别方法[J]. 《山东大学学报(理学版)》, 2020, 55(1): 102-109.
[6] 徐凤生,于秀清,张立华. 信息智能融合与它的P-增广矩阵推理生成[J]. 《山东大学学报(理学版)》, 2019, 54(9): 22-28.
[7] 刘双根,王蓉蓉,李圣雨. GF(3m)上Hessian曲线的三进制Montgomery算法[J]. 《山东大学学报(理学版)》, 2019, 54(1): 96-102.
[8] 丁义涛,杨海滨,杨晓元,周潭平. 一种同态密文域可逆隐藏方案[J]. 山东大学学报(理学版), 2017, 52(7): 104-110.
[9] 康海燕,马跃雷. 差分隐私保护在数据挖掘中应用综述[J]. 山东大学学报(理学版), 2017, 52(3): 16-23.
[10] 张凌,任雪芳,史开泉. 信息规律智能变换-伪装与P-规律增广矩阵[J]. 山东大学学报(理学版), 2016, 51(8): 90-97.
[11] 吴志军,沈丹丹. 基于信息综合集成共享的下一代网络化全球航班追踪体系结构及关键技术[J]. 山东大学学报(理学版), 2016, 51(11): 1-6.
[12] 关静, 张晓斌, 张金凤. 随机机会约束的机型指派模型及算法[J]. 山东大学学报(理学版), 2015, 50(03): 45-51.
[13] 张晶, 薛冷, 崔毅, 容会, 王剑平. 基于无线传感器网络的双混沌数据加密算法建模与评价[J]. 山东大学学报(理学版), 2015, 50(03): 1-5.
[14] 汤积华,陈保会. 内逆P-信息智能融合与属性析取扩展关系[J]. 山东大学学报(理学版), 2014, 49(2): 89-92.
[15] 康海燕, 杨孔雨, 陈建明. 于K-匿名的个性化隐私保护方法研究[J]. 山东大学学报(理学版), 2014, 49(09): 142-149.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨军. 金属基纳米材料表征和纳米结构调控[J]. 山东大学学报(理学版), 2013, 48(1): 1 -22 .
[2] 何海伦, 陈秀兰*. 变性剂和缓冲系统对适冷蛋白酶MCP-01和中温蛋白酶BP-01构象影响的圆二色光谱分析何海伦, 陈秀兰*[J]. 山东大学学报(理学版), 2013, 48(1): 23 -29 .
[3] 赵君1,赵晶2,樊廷俊1*,袁文鹏1,3,张铮1,丛日山1. 水溶性海星皂苷的分离纯化及其抗肿瘤活性研究[J]. J4, 2013, 48(1): 30 -35 .
[4] 孙小婷1,靳岚2*. DOSY在寡糖混合物分析中的应用[J]. J4, 2013, 48(1): 43 -45 .
[5] 罗斯特,卢丽倩,崔若飞,周伟伟,李增勇*. Monte-Carlo仿真酒精特征波长光子在皮肤中的传输规律及光纤探头设计[J]. J4, 2013, 48(1): 46 -50 .
[6] 杨伦,徐正刚,王慧*,陈其美,陈伟,胡艳霞,石元,祝洪磊,曾勇庆*. RNA干扰沉默PID1基因在C2C12细胞中表达的研究[J]. J4, 2013, 48(1): 36 -42 .
[7] 冒爱琴1, 2, 杨明君2, 3, 俞海云2, 张品1, 潘仁明1*. 五氟乙烷灭火剂高温热解机理研究[J]. J4, 2013, 48(1): 51 -55 .
[8] 杨莹,江龙*,索新丽. 容度空间上保费泛函的Choquet积分表示及相关性质[J]. J4, 2013, 48(1): 78 -82 .
[9] 李永明1, 丁立旺2. PA误差下半参数回归模型估计的r-阶矩相合[J]. J4, 2013, 48(1): 83 -88 .
[10] 董伟伟. 一种具有独立子系统的决策单元DEA排序新方法[J]. J4, 2013, 48(1): 89 -92 .