《山东大学学报(理学版)》 ›› 2024, Vol. 59 ›› Issue (10): 89-100.doi: 10.6040/j.issn.1671-9352.0.2023.165
• • 上一篇
杨帆,郭俐辉*
YANG Fan, GUO Lihui*
摘要: 主要研究三元简化色谱方程组黎曼解的整体结构及阴影波解的存在性和收敛性。根据黎曼初值,将黎曼问题分6种情形进行讨论,得到三元简化色谱方程组的黎曼解。当-1
-≤0≤p+时,证明阴影波解在Schwartz广义函数意义下的存在性和收敛性。最后,给出数值模拟。
中图分类号:
[1] 王明亮,周宇斌. 变色散系数的非线性色谱方程[J]. 烟台大学学报(自然科学与工程版), 1996(1):7-13. WANG Mingliang, ZHOU Yubin. An equation of nonlinear chromatography with variable dispersion coefficient[J]. Journal of Yantai University(Natural Science and Engineering), 1996(1):7-13. [2] SUN Meina. Shadow wave solution for the generalized langmuir isotherm in chromatography[J]. Archiv der Mathematik, 2016, 107:645-658. [3] CHENG Hongjun, YANG Hanchun. Delta shock waves in chromatography equations[J]. Journal of Mathematical Analysis and Applications, 2011, 380(2):475-485. [4] WANG Guodong. One-dimensional nonlinear chromatography system and delta-shock waves[J]. Zeitschrift für Angewandte Mathematik und Physik, 2013, 64(5):1451-1469. [5] GUO Lihui, PAN Lijun, YIN Gan. The perturbed Riemann problem and delta contact discontinuity in chromatography equations[J]. Nonlinear Analysis:Theory, Methods & Applications, 2014, 106:110-123. [6] SHEN Chun. The asymptotic behaviors of solutions to the perturbed Riemann problem near the singular curve for the chromatography system[J]. Journal of Nonlinear Mathematical Physics, 2015, 22(1):76-101. [7] SUN Meina. Delta shock waves for the chromatography equations as self-similar viscosity limits[J]. Quarterly of Applied Mathematics, 2011, 69(3):425-443. [8] ZHANG Qingling. Interactions of delta shock waves and stability of Riemann solutions for nonlinear chromatography equations[J]. Zeitschrift für angewandte Mathematik und Physik, 2016, 67:15. [9] SUN Meina. Interactions of delta shock waves for the chromatography equations[J]. Applied Mathematics Letters, 2013, 26(6):631-637. [10] WEI Zhijian, SUN Meina. Exact delta shock wave solution to the Riemann problem for the three-component chromatography model[J]. Computational and Applied Mathematics, 2022, 41(4):133. [11] MAZZOTTI M, TARAFDER A, CORNEL J, et al. Experimental evidence of a delta-shock in nonlinear chromatography[J]. Journal of Chromatography A, 2010, 1217(13):2002-2012. [12] NEDELJKOV M. Shadow waves:entropies and interactions for delta and singular shocks[J]. Archive for Rational Mechanics and analysis, 2010, 197(2):489-537. [13] NEDELJKOV M. Higher order shadow waves and delta shock blow up in the Chaplygin gas[J]. Journal of Differential Equations, 2014, 256(11):3859-3887. [14] NEDELJKOV M, NEUMANN L, OBERGUGGENBERGER M, et al. Radially symmetric shadow wave solutions to the system of pressureless gas dynamics in arbitrary dimensions[J]. Nonlinear Analysis, 2017, 163:104-126. [15] 贾艺菲, 郭俐辉, 白寅松. 相对论Chaplygin气体欧拉方程组的阴影波解[J]. 山东大学学报(理学版), 2022, 57(4):55-65. JIA Yifei, GUO Lihui, BAI Yinsong. Shadow wave solution for the relativistic Chaplygin Euler equations[J]. Journal of Shandong University(Natural Science), 2022, 57(4):55-65. [16] DAW D A E, NEDELJKOV M. Shadow waves for pressureless gas balance laws[J]. Applied Mathematics Letters, 2016, 57:54-59. [17] KRUNIC T, NEDELJKOV M. Shadow wave solutions for a scalar two-flux conservation law with Rankine-Hugoniot deficit[J]. Journal of Hyperbolic Differential Equations, 2021, 18(3):539-556. [18] RUŽICIC S, NEDELJKOV M. Shadow wave tracking procedure and initial data problem for pressureless gas model[J]. Acta Applicandae Mathematicae, 2021, 171:1-36. [19] KORCHINSKI D J. Solution of a riemann problem for a 2×2 system of conservation laws possessing no classical weak solution[D]. Garden City: Adelphi University, 1977. [20] WANG Zhen, ZHANG Qingling. The Riemann problem with delta initial data for the one-dimensional Chaplygin gas equations[J]. Acta Mathematica Scientia, 2012, 32(3):825-841. [21] CHENG Hongjun, YANG Hanchun. Riemann problem for the relativistic Chaplygin Euler equations[J]. Journal of Mathema-tical Analysis and Applications, 2011, 381(1):17-26. [22] NEDELJKOV M, OBERGUGGENBERGER M. Interactions of delta shock waves in a strictly hyperbolic system of conservation laws[J]. Journal of Mathematical Analysis and Applications, 2008, 344(2):1143-1157. [23] TAN Dechun, ZHANG Tong, CHANG Tung, et al. Delta-shock waves as limits of vanishing viscosity for hyperbolic systems of conservation laws[J]. Journal of Differential Equations, 1994, 112(1):1-32. [24] DANILOV V, SHELKOVICH V. Delta-shock wave type solution of hyperbolic systems of conservation laws[J]. Quarterly of Applied Mathematics, 2005, 63(3):401-427. [25] SARRICO C O R, PAIVA A. Delta shock waves in the shallow water system[J]. Journal of Dynamics and Differential Equations, 2018, 30:1187-1198. [26] ABREU E, LAMBERT W. Riemann problems and delta-shock solutions for a Keyfitz-Kranzer system with a forcing term[J]. Journal of Mathematical Analysis and Applications, 2021, 502(2):125267. [27] PANG Yicheng. Delta shock wave in the compressible Euler equations for a Chaplygin gas[J]. Journal of Mathematical Analysis and Applications, 2017, 448(1):245-261. [28] 俞康宁, 郭俐辉. 带有源项的广义Chaplygin气体磁流体Euler方程组Riemann解的极限[J]. 应用数学与力学, 2020, 41(4):420-437. YU Kangning, GUO Lihui. Limits of Riemann solutions for generalized Chaplygin gas magnetohydrodynamic Euler equations with source terms[J]. Applied Mathematics & Mechanics, 2020, 41(4):420-437. [29] LIU Dongdong, YU Kangning, GUO Lihui. The initial-boundary value problem for a strictly hyperbolic equations[J]. Computational and Applied Mathematics, 2022, 41(5):197. [30] TEMPLE B. Systems of conservation laws with invariant submanifolds[J]. Transactions of the American Mathematical Society, 1983, 280(2):781-795. [31] TEMPLE B. Global solution of the Cauchy problem for a class of 2× 2 nonstrictly hyperbolic conservation laws[J]. Advances in Applied Mathematics, 1982, 3(3):335-375. |
[1] | 贾艺菲,郭俐辉,白寅松. 相对论Chaplygin气体欧拉方程组的阴影波解[J]. 《山东大学学报(理学版)》, 2022, 57(4): 55-65. |
|