您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (2): 19-23.doi: 10.6040/j.issn.1671-9352.0.2023.275

• • 上一篇    

带有割点的图的补图的距离谱半径

陈旭1,邵荣侠1,王国平2*   

  1. 1.新疆财经大学统计与数据科学学院, 新疆 乌鲁木齐 830012;2.新疆师范大学数学科学学院, 新疆 乌鲁木齐 830017
  • 发布日期:2025-02-14
  • 通讯作者: 王国平(1965— ),男,教授,博士研究生,研究方向为组合数学、图论等. E-mail:xj.wgp@163.com
  • 作者简介:陈旭(1995— ),男,助教,硕士研究生,研究方向为图论及其应用. E-mail:xuchen@xjufe.edu.cn
  • 基金资助:
    2023年校级教学改革项目(4008107)

Distance spectral radius of complements of graphs with cut vertices

CHEN Xu1, SHAO Rongxia1, WANG Guoping2*   

  1. 1. School of Statistics and Data Science, Xinjiang University of Finance and Economics, Urumqi 830012, Xinjiang, China;
    2. School of Mathematical Sciences, Xinjiang Normal University, Urumqi 830017, Xinjiang, China
  • Published:2025-02-14

摘要: 本文确定了所有团树的补图中距离谱半径分别是最大和最小的图,给出了所有带有割点的图的补图中距离谱半径分别是最大和最小的图。

关键词: 距离谱半径, 补图, 团树, 割点

Abstract: This paper determines the graphs with maximum and minimum distance spectral radii in the complement graphs of all clique trees, and provides the graphs with maximum and minimum distance spectral radii in the complement graphs of all graphs with cut vertices.

Key words: distance spectral radius, complement, clique tree, cut vertices

中图分类号: 

  • O157.5
[1] BOSE S S, NATH M, PAUL S. On the maximal distance spectral radius of graphs without a pendent vertex[J]. Linear Algebra and Its Applications, 2013, 438(11):4260-4278.
[2] ALEKSANDAR I. Distance spectral radius of trees with given matching number[J]. Discrete Applied Mathematics, 2010, 158(16):1799-1806.
[3] NING W J, OUYANG L Q, LU M. Distance spectral radius of trees with fixed number of pendent vertices[J]. Linear Algebra and Its Applications, 2013, 439(8):2240-2249.
[4] AOUCHICHE M, HANSEN P. Distance spectra of graphs: a survey[J]. Linear Algebra and Its Applications, 2014, 458:301-386.
[5] FAN Y Z, ZHANG F F, WANG Y. The least eigenvalue of the complements of trees[J]. Linear Algebra and Its Applications, 2011, 435(9):2150-2155.
[6] JIANG G, YU G D, SUN W, et al. The least eigenvalue of graphs whose complements have only two pendent vertices[J]. Applied Mathematics and Computation, 2018, 331:112-119.
[7] LI S C, WANG S J. The least eigenvalue of the signless Laplacian of the complements of trees[J]. Linear Algebra and Its Applications, 2012, 436(7):2398-2405.
[8] YU G D, FAN Y Z, YE M L. The least signless Laplacian eignvalue of the complements of unicyclic graphs[J]. Applied Mathematics and Computation, 2017, 306:13-21.
[9] 冯小芸,陈旭,王国平. 仅有三个悬挂点的图的补图的最小特征值[J]. 华中师范大学学报(自然科学版),2021,55(6):1000-1006. FENG Xiaoyun, CHEN Xu, WANG Guoping. The least eigenvalue of the complements of graphs having exactly three pendent vertices[J]. Journal of Huazhong Normal University(Natural Sciences), 2021, 55(6):1000-1006.
[10] CHEN X, WANG G P. The distance spectrum of the complements of graphs of diameter greater than three[J]. Indian Journal of Pure and Applied Mathematics, 2023, 54:959-965.
[11] LIN H Q, DRURY S. The distance spectrum of complements of trees[J]. Linear Algebra and Its Applications, 2017, 530:185-201.
[12] QIN R, LI D, CHEN Y Y, et al. The distance eigenvalues of the complements of unicyclic graphs[J]. Linear Algebra and Its Applications, 2020, 598:49-67.
[13] CHEN X, WANG G P. The distance spectrum of the complements of graphs with two pendent vertices[J]. Indian Journal of Pure and Applied Mathematics, 2023, 54:1069-1080.
[1] 吴一凡,王广富. 平面四角链距离谱半径的极图[J]. 《山东大学学报(理学版)》, 2022, 57(2): 84-91.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!