《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (2): 63-71.doi: 10.6040/j.issn.1671-9352.0.2023.278
• • 上一篇
范鑫宇,高艳超*
FAN Xinyu, GAO Yanchao*
摘要: 研究了一类具黏弹性项的四阶双曲方程的初边值问题。利用Galerkin方法得到了弱解的局部存在性,利用位势井方法证明了弱解的整体存在性,并给出了整体解的衰减估计。
中图分类号:
[1] AL-GHARABLI M M, GUESMIA A, MESSAOUDI S A. Existence and a general decay results for a viscoelastic plate equation with a logarithmic nonlinearity[J]. Communications on Pure and Applied Analysis, 2019, 18(1):159-180. [2] AL-GHARABLI M M. New general decay results for a viscoelastic plate equation with a logarithmic nonlinearity[J]. Boundary Value Problems, 2019, 2019(1):194-215. [3] MERZOUG K, BOUMAZA N, GHERAIBIA B. General decay result of solutions for viscoelastic wave equation with logarithmic nonlinearity[C] //International Conference on Recent Advances in Mathematics and Informatics. Tebessa, Algeria: IEEE, 2021:1-4. [4] LI Qian, HE Luofei. General decay and blow-up of solutions for a nonlinear viscoelastic wave equation with strong damping[J]. Boundary Value Problems, 2018, 2018(153):1-22. [5] ZU Ge, GUO Bin. Bounds for lifespan of solutions to strongly damped semilinear wave equations with logarithmic sources and arbitrary initial energy[J]. Evolution Equations Control Theory, 2021, 10(2):259-270. [6] YANG Hui, HAN Yuzhu. Blow-up for a damped p-Laplacian type wave equation with logarithmic nonlinearity[J]. Journal of Differential Equations, 2022, 306(1):569-589. [7] AL-GHAREBLI M M, MESSAOUDI S A. The existence and the asymptotic behavior of a plate equation with frictional damping and a logarithmic source term[J]. Journal of Mathematical Analysis and Applications, 2017, 454(2):1114-1128. [8] GROSS L. Logarithmic Sobolev inequalities[J]. American Journal of Mathematics, 1975, 97(4):1061-1083. [9] CHEN H, LUO P, LIU G W. Global solution and blow-up of a semilinear heat equation with logarithmic nonlinearity[J]. Journal of Mathematical Analysis Applications, 2015, 422(1):84-98. [10] SIMON J. Compact sets in the space Lp(0,T;B)[J]. Annali di Matematica pura ed Applicata, 1986, 1976(146):65-96. [11] 伍卓群,李勇. 常微分方程[M]. 北京:高等教育出版社,2004. WU Zhuoqun, LI Yong. Ordinary differential equations[M]. Beijing: Higher Education Press, 2004. |
[1] | 张厚超, 朱维钧, 王俊俊. 非线性四阶双曲方程一个低阶混合元方法的超收敛和外推[J]. 山东大学学报(理学版), 2015, 50(12): 35-46. |
|