您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (11): 109-114.doi: 10.6040/j.issn.1671-9352.0.2023.484

• • 上一篇    

平凡扩张环上的强Gorenstein投射模

贺健媛,金袁慧,王占平*   

  1. 绍兴文理学院数理信息学院, 浙江 绍兴 312000
  • 发布日期:2025-11-11
  • 通讯作者: 王占平(1978— ),女,教授,博士,研究方向为环的同调理论. E-mail:wangzp28@163.com
  • 作者简介:贺健媛(2000— ),女,硕士研究生,研究方向为环的同调理论. E-mail:1729267164@qq.com
  • 基金资助:
    绍兴文理学院科学研究基金资助项目(13011001002/112);绍兴文理学院学生科学研究基金资助项目(Y20230217)

Strongly Gorenstein projective modules over trivial ring extensions

HE Jianyuan, JIN Yuanhui, WANG Zhanping*   

  1. Department of Mathematics and Information, Shaoxing University, Shaoxing 312000, Zhejiang, China
  • Published:2025-11-11

摘要: 设RM是平凡扩张环,其中R是环,M是R-R-双模,本文给出了左RM-模(X,α)是强Gorenstein投射模的充分必要条件。

关键词: 平凡扩张环, 强Gorenstein投射模, 有限投射维数

Abstract: Let RM be a trivial ring extension, where R is a ring and M is an R-R-bimodule. We give sufficient and necessary conditions such that (X,α) is a strongly Gorenstein projective left RM-module.

Key words: trivial extension, strongly Gorenstein projective module, finite projective dimension

中图分类号: 

  • O153.3
[1] ENOCHS E E, JENDA O M G. Gorenstein injective and Gorenstein projective modules[J]. Mathematische Zeitschrift, 1995, 200(1):611-633.
[2] HOLM H. Gorenstein homological dimensions[J]. Journal of Pure and Applied Algebra, 2004, 189(1):167-196.
[3] BENNIS D, MAHDOU N. Strongly Gorenstein projective, injective and flat modules[J]. Journal of Pure and Applied Algebra, 2007, 210(2):437-445.
[4] FOSSUM R M, GRIFFITH P, REITEN I. Trivial extensions of abelian categories, homological algebra of trivial extensions of abelian categories with applications to ring theory[M]. Berlin: Springer, 1975.
[5] MINAMOTO H, YAMAURA K. Homological dimension formulas for trivial extension algebras[J]. Journal of Pure and Applied Algebra, 2020, 224(8):106344.
[6] MAO Lixin. Strongly Gorenstein projective, injective and flat modules over formal triangular matrix rings[J]. Bulletin Mathematique de la Societe des Sciences Mathematiques de Roumanie, 2020, 63(3):271-283.
[7] ASEFA D. Strongly Gorenstein-projective modules over rings of Morita contexts[J]. Beiträge zur Algebra und Geometrie/Contributions to Algebra and Geometry, 2024, 65(1):43-57.
[8] MAO Lixin. Gorenstein projective, injective and flat modules over trivial ring extensions[J]. Journal of Algebra and Its Applications, 2025, 24(2):2550030.
[9] ENOCHS E E, IZURDIAGA M C, TORREILLAS B. Gorenstein conditions over triangular matrix rings[J]. Journal of Pure and Applied Algebra, 2014, 218(8):1544-1554.
[10] ENOCHS E E, JENDA O M G. Relative homological algebra[M]. Berlin-New York: Walter de Gruyter, 2000.
[1] 夏旭,陈文静. Morita环上的强Gorenstein投射模[J]. 《山东大学学报(理学版)》, 2025, 60(11): 95-100.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!