《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (11): 109-114.doi: 10.6040/j.issn.1671-9352.0.2023.484
• • 上一篇
贺健媛,金袁慧,王占平*
HE Jianyuan, JIN Yuanhui, WANG Zhanping*
摘要: 设RM是平凡扩张环,其中R是环,M是R-R-双模,本文给出了左RM-模(X,α)是强Gorenstein投射模的充分必要条件。
中图分类号:
| [1] ENOCHS E E, JENDA O M G. Gorenstein injective and Gorenstein projective modules[J]. Mathematische Zeitschrift, 1995, 200(1):611-633. [2] HOLM H. Gorenstein homological dimensions[J]. Journal of Pure and Applied Algebra, 2004, 189(1):167-196. [3] BENNIS D, MAHDOU N. Strongly Gorenstein projective, injective and flat modules[J]. Journal of Pure and Applied Algebra, 2007, 210(2):437-445. [4] FOSSUM R M, GRIFFITH P, REITEN I. Trivial extensions of abelian categories, homological algebra of trivial extensions of abelian categories with applications to ring theory[M]. Berlin: Springer, 1975. [5] MINAMOTO H, YAMAURA K. Homological dimension formulas for trivial extension algebras[J]. Journal of Pure and Applied Algebra, 2020, 224(8):106344. [6] MAO Lixin. Strongly Gorenstein projective, injective and flat modules over formal triangular matrix rings[J]. Bulletin Mathematique de la Societe des Sciences Mathematiques de Roumanie, 2020, 63(3):271-283. [7] ASEFA D. Strongly Gorenstein-projective modules over rings of Morita contexts[J]. Beiträge zur Algebra und Geometrie/Contributions to Algebra and Geometry, 2024, 65(1):43-57. [8] MAO Lixin. Gorenstein projective, injective and flat modules over trivial ring extensions[J]. Journal of Algebra and Its Applications, 2025, 24(2):2550030. [9] ENOCHS E E, IZURDIAGA M C, TORREILLAS B. Gorenstein conditions over triangular matrix rings[J]. Journal of Pure and Applied Algebra, 2014, 218(8):1544-1554. [10] ENOCHS E E, JENDA O M G. Relative homological algebra[M]. Berlin-New York: Walter de Gruyter, 2000. |
| [1] | 夏旭,陈文静. Morita环上的强Gorenstein投射模[J]. 《山东大学学报(理学版)》, 2025, 60(11): 95-100. |
|
||