《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (3): 100-106.doi: 10.6040/j.issn.1671-9352.0.2024.051
杨玉杰,凌能祥*
YANG Yujie, LING Nengxiang*
摘要: 首先基于不完全观测的函数型数据,介绍部分函数型线性分位数回归模型及模型的估计方法和实施预测的步骤。其次,由于不完全观测的函数型变量广泛存在,利用尼泊尔2019年4月8日至2020年8月31日期间每10分钟一次的测风塔记录数据进行实证分析。针对风速数据的不完全函数型特征,构建以此为协变量、以日均气压为响应变量的不完全部分函数型线性分位数回归模型,获得模型未知斜率函数和未知参数的估计量,并且对日均气压进行预测分析,进一步说明模型及方法的有效性。
中图分类号:
[1] RAMSAY J, SILVERMAN B. Functional data analysis[M]. New York: Springer, 2005. [2] FERRATY F, VIEU P. Nonparametric functional data analysis:theory and practice[M]. New York: Springer, 2006. [3] HALL P, HOROWITZ J L. Methodology and convergence rates for functional linear regression[J]. The Annals of Statistics, 2007, 35:70-91. [4] CAI T T, HALL P. Prediction in functional linear regression[J]. The Annals of Statistics, 2006, 34:2159-2179. [5] ZHANG D W, LIN X H, SOWERS M. Two-stage functional mixed models for evaluating the effect of longitudinal covariate profiles on a scalar outcome[J]. Biometrics, 2007, 63(2):351-362. [6] SHIN H. Partial functional linear regression[J]. Journal of Statistical Planning and Inference, 2009, 139:3405-3418. [7] KOENKER R, BASSETT G. Regression quantiles[J]. Econometrica, 1978, 46:33-51. [8] CARDOT H, CRAMBES C, SARDA P. Quantile regression when the covariates are functions[J]. Journal of Nonparametric Statistics, 2005, 17(7):841-856. [9] KATO K. Estimation in functional linear quantile regression[J]. The Annals of Statistics, 2012, 40:3108-3136. [10] 杜艳芳. 基于分位数回归的空气质量指数分析[D]. 兰州:兰州大学,2016. DU Yanfang. The analysis of air quality index based on quantile regression[D]. Lanzhou: Lanzhou University, 2016. [11] 孙鸣茜. 函数型数据分位数回归模型及其应用[D]. 武汉:华中科技大学,2019. SUN Mingxi. Quantile regression of functional data and its application[D]. Wuhan: Huazhong University of Science and Technology, 2019. [12] TANG Qingguo, CHENG Longsheng. Partial functional linear quantile regression[J]. Science China Mathematics, 2014, 57(12):2589-2608. [13] KRAUS D. Components and completion of partially observed functional data[J]. Journal of the Royal Statistical Society, Series B: Statistical Methodology, 2015, 77(4):777-801. [14] 王楚. 带有缺失数据的函数型响应部分函数线性回归模型的估计与应用[D]. 南京:南京理工大学,2021. WANG Chu. Estimation andapplication of partial functional linear regression model for function response with missing data[D]. Nanjing: Nanjing University of Science and Technology, 2021. [15] KNEIP A, LIEBL D. On the optimal reconstruction of partially observed functional data[J]. The Annals of Statistics, 2020, 4:1692-1717. [16] XIAO Juxia, XIE Tianfa, ZHANG Zhongzhan. Estimation in partially observed functional linear quantile regression[J]. Journal of Systems Science and Complexity, 2020, 35:313-341. [17] CRAMBES C, DAAYEB C, GANNOUN A, et al. Functional linear model with partially observed covariate and missing values in the response[J]. Journal of Nonparametric Statistics, 2023, 35(1):172-197. [18] BOSQ D. Linear processes in function spaces: theory and applications[M]. New York: Springer Science and Business Media, 2000. |
[1] | 武祺然,周力凯,孙金金,王念鸽,余群芳. 浙江省空气质量变化特征研究——基于函数型数据分析[J]. 《山东大学学报(理学版)》, 2021, 56(7): 53-64. |
[2] | 廖祥文,徐阳,魏晶晶,杨定达,陈国龙. 基于双层堆叠分类模型的水军评论检测[J]. 《山东大学学报(理学版)》, 2019, 54(7): 57-67. |
[3] | 邵伟1,祝丽萍2,刘福国2,王秋平2. 对称阵稀疏主成分分析及其在充分降维问题中的应用[J]. J4, 2012, 47(4): 116-120. |
[4] | 王德良,李科,陆丽玲. 石门国家森林公园唐鱼生境特征分析[J]. J4, 2012, 47(3): 1-4. |
[5] | 周娟1,王仁卿2,郭卫华2*,王强2,王炜2,庞绪贵3,战金成3,代杰瑞3,周广军4. 鱼台优质稻生产基地土壤地球化学元素调查[J]. J4, 2012, 47(3): 5-9. |
[6] | 朱世伟,赛 英 . 基于主成分分析和粗径向基神经网络的财务预警模型研究[J]. J4, 2008, 43(11): 48-53 . |
[7] | 杨绍华,林 盘,潘 晨 . 利用小波变换提高基于KPCA方法的人脸识别性能[J]. J4, 2007, 42(9): 96-100 . |
|