《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (7): 22-31.doi: 10.6040/j.issn.1671-9352.0.2024.062
• • 上一篇
闫本聪1,王迎美1,2*
YAN Bencong1, WANG Yingmei1,2*
摘要: 引入Transformer结构和UNet++网络,提出一个新的双分支视网膜血管分割网络,该网络中的双分支编码器可以更好地关联图像中的全局信息,使得整个网络在小数据集的训练中也有较好的效果。在此基础上,为了进一步解决UNet网络中下采样操作导致的视网膜血管信息丢失问题,在输出层和网络第二层的特征图引入引导滤波,可以有效提高小血管分割精度。该网络使用DRIVE数据集(digital retinal images for vessel extraction)和CHASEDB1数据集(combined healthy and diabetic retinopathy database 1)进行实验,在精确度、灵敏度等参数上有较大的提升,并且血管分割图中正确分割出更多细小血管,总体表现出较好的效果。
中图分类号:
[1] ZHOU Jing, CHEN Bo. Retinal cell damage in diabetic retinopathy[J]. Cells, 2023, 12(9):1342. [2] JENA P K, KHUNTIA B, PALAI C, et al. A novel approach for diabetic retinopathy screening using asymmetric deep learning features[J]. Big Data and Cognitive Computing, 2023, 7(1):25. [3] YOU Ning, HAN Libo, ZHU Daming, et al. Research on image denoising in edge detection based on wavelet transform[J]. Applied Sciences, 2023, 13(3):1837. [4] XIAN Ronghao, LUGU Rikong, PENG Hong, et al. Edge detection method based on nonlinear spiking neural systems[J]. International Journal of Neural Systems, 2023, 33(1):2250060. [5] 李兰兰,张孝辉,牛得草,等. 深度学习在视网膜血管分割上的研究进展[J]. 计算机科学与探索,2021,15(11):2063-2076. LI Lanlan, ZHANG Xiaohui, NIU Decao, et al. Research progress of deep learning in retinal vessel segmentation[J]. Journal of Fronties of Computer Science and Technology, 2021, 15(11):2063-2076. [6] 纪守领,杜天宇,邓水光,等. 深度学习模型鲁棒性研究综述[J]. 计算机学报,2022,45(1):190-206. JI Shouling, DU Tianyu, DENG Shuiguang, et al. Robustness certification research on deep learning models: a survey[J]. Chinese Journal of Computers, 2022, 45(1):190-206. [7] RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C] // Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2015:234-241. [8] SIDDIQUE N, PAHEDING S, ELKIN C P, et al. U-net and its variants for medical image segmentation: a review of theory and applications[J]. IEEE Access, 2021, 9:82031-82057. [9] ZHOU Z W, SIDDIQUEE M M R, TAJBAKHSH N, et al. Unet++: redesigning skip connections to exploit multiscale features in image segmentation[J]. IEEE Transactions on Medical Imaging, 2019, 39(6):1856-1867. [10] LONG J, SHELHAMER E, Darrell T. Fully convolutional networks for semantic segmentation[C] // Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Boston: lEEE, 2015:3431-3440. [11] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C] // Proceedings of the 31st International Conference on Neural Information Processing Systems. New York: ACM, 2017:6000-6010. [12] DOSOVISKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: transformers for image recognition at scale[EB/OL].(2021-06-03)[2024-03-01]. https://arxiv.org/pdf/2010.11929. [13] CHEN Jieneng, LU Yongyi, YU Qihang, et al. Transunet: transformers make strong encoders for medical image segmentation[EB/OL].(2021-02-08)[2024-03-01]. https://arxiv.org/pdf/2102.04306. [14] TOMAR N K, SHERGILL A, RIEDERS B, et al. TransResU-Net: transformer based ResU-Net for real-time colonoscopy polyp segmentation[EB/OL].(2022-06-17)[2024-03-01]. https://doi.org/10.48550/arXiv.2206.08985. [15] CAO H, WANG Y Y, CHEN J, et al. Swin-unet: unet-like pure transformer for medical image segmentation[C] // European Conference on Computer Vision. Cham: Springer, 2022:205-218. [16] HE Kaiming, SUN Jian, TANG Xiaoou. Guided image filtering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 35(6):1397-1409. [17] QIN Zhen, SUN Weixuan, DENG Hui, et al. Cosformer: rethinking softmax in attention[EB/OL].(2022-02-17)[2024-03-01]. https://doi.org/10.48550/arXiv.2206.08985. [18] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C] // Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016:770-778. [19] WU Yuxin, HE Kaiming. Group normalization[C] // Proceedings of the European Conference on Computer Vision(ECCV). Munich: Springer, 2018:3-19. [20] STAAL J, ABRÀMOFF M D, NIEMEIJER M, et al. Ridge-based vessel segmentation in color images of the retina[J]. IEEE Transactions on Medical Imaging, 2004, 23(4):501-509. [21] OWEN C G, RUDNICKA A R, MULLEN R, et al. Measuring retinal vessel tortuosity in 10-year-old children: validation of the computer-assisted image analysis of the retina(CAIAR)program[J]. Investigative Ophthalmology & Visual Science, 2009, 50(5):2004-2010. [22] REYAD M, SARHAN A M, ARAFA M. A modifiedAdam algorithm for deep neural network optimization[J]. Neural Computing and Applications, 2023, 35(23):17095-17112. [23] QURESHI I, YAN J, ABBAS Q, et al. Medical image segmentation using deep semantic-based methods:a review of techniques, applications and emerging trends[J]. Information Fusion, 2023, 90:316-352. [24] YIN Pengshuai, YUAN Rui, CHENG Yiming, et al. Deep guidance network for biomedical image segmentation[J]. IEEE Access, 2020, 8:116106-116116. [25] SUN Guanqun, PAN Yizhi, KONG Weikun, et al. DA-TransUNet: integrating spatial and channel dual attention with transformer U-Net for medical image segmentation[J]. Frontiers in Bioengineering and Biotechnology, 2024, 12:1398237. |
[1] | 易三莉,陈建亭,贺建峰. ASR-UNet: 一种基于注意力机制改进的视网膜血管[J]. 《山东大学学报(理学版)》, 2021, 56(9): 13-20. |
[2] | 林明星. 基于变分结构引导滤波的低照度图像增强算法[J]. 《山东大学学报(理学版)》, 2020, 55(9): 72-80. |
|