《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (3): 22-32.doi: 10.6040/j.issn.1671-9352.0.2024.105
杜慧源,范小明*
DU Huiyuan, FAN Xiaoming*
摘要: 研究随机波动率和随机利率模型下含交易对手违约风险的期权定价问题,该模型中波动率和利率过程的均值回复水平均由有限状态空间的连续马尔可夫过程控制,并假设标的资产价格过程和交易对手的资产价格过程均含有跳,且它们的跳均服从具有自刺激性的Hawkes过程,以及假设波动率过程中也含有跳。利用测度变换、求解贴现特征函数、多元傅里叶变换等方法,推导欧式脆弱期权的解析定价公式;然后利用快速傅里叶变换(fast Fourier transform, FFT)方法计算期权解析定价公式的有效逼近,并通过蒙特卡罗仿真检验逼近的准确性;最后,对所提模型中不同参数对脆弱看涨期权价格的敏感性进行分析,并通过数值实验对比所提出模型与不具有马尔可夫区制转换(Markov regime-switching, MRS)的随机利率模型的差异,说明在模型中引入区制转换对期权定价结果的影响。
中图分类号:
[1] BLACK F, SCHOLES M. The pricing of options and corporate liabilities[J]. Journal of Political Economy, 1973, 81(3):637-654. [2] HE Xinjiang. A closed-form pricing formula for European options under the Heston model with stochastic interest rate[J]. Journal of Computational and Applied Mathematics, 2018, 335:323-333. [3] PILLAY E, OHARA G J. FFT based option pricing under a mean reverting process with stochastic volatility and jumps[J]. Computational Applied Mathematics, 2011, 235(12):3378-3384. [4] JOHNSON H, STULZ R. The pricing of options with default risk[J]. Journal of Finance, 1987, 42(2):267-280. [5] TIAN Lihui, WANG Guanying, WANG Xingchun, et al. Pricing vulnerable options with correlated credit risk under jump-diffusion processes[J]. Journal of Futures Markets, 2014, 34(10):957-979. [6] JING Bo, LI Shenghong, MA Yong. Pricing VIX options with volatility clustering[J]. Journal of Futures Markets, 2020, 40(6):928-944. [7] CHEN Li, MA Yong, XIAO Weilin. Pricing defaultable bonds under Hawkes jump-diffusion processes[J]. Finance Research Letters, 2022, 47:102738. [8] MA Y, PAN D, SHRESTHA K, et al. Pricing and hedging foreign equity options under Hawkes jump-diffusion processes[J]. Physica A:Statistical Mechanics and its Applications, 2020, 537:122645. [9] HAMILTON J D. A new approach to the economic analysis of nonstationary time series and the business cycle[J]. Econometrica, 1989, 57(2):357. [10] XIE Yurong, DENG Guohe. Vulnerable European option pricing in a Markov regime-switching Heston model with stochastic interest rate[J]. Chaos, Solitons & Fractals, 2022, 156:111896. [11] HAN Miao, SONG Xuefeng, NIU Huawei, et al. Pricing vulnerable options with market prices of common jump risks under regime-switching models[J]. Discrete Dynamics in Nature and Society, 2018, 2018:8545841. [12] FAN K, SHEN Y, SIU K T, et al. An FFT approach for option pricing under a regime-switching stochastic interest rate model[J]. Communications in Statistics: Theory and Methods, 2016, 46(11):5292-5310. [13] ELLIOTT R J, AGGOUN L, MOORE J B. Hidden Markov models: estimation and control[M]. New York: Springer, 1994. [14] 马勇,吕建平. Hawkes跳扩散模型下的脆弱期权定价[J]. 系统工程学报, 2022, 37(5):605-616. MA Yong, LYU Jianping. Vulnerable option pricing under Hawkes jump diffusion model[J]. Journal of Systems Engineering, 2022, 37(5):605-616. [15] DUFFIE D, PAN J, SINGLETON K. Transform analysis and asset pricing for affine jump-diffusions[J]. Econometrica, 2000, 68(6):1343-1376. [16] ELLIOTT J R, NISHIDE K, OSAKWE U C. Heston-type stochastic volatility with a Markov switching regime[J]. Journal of Futures Markets, 2016, 36(9):902-919. [17] TENG L, EHRHARDT M, GÜNTHER M. On the Heston model with stochastic correlation[J]. International Journal of Theoretical and Applied Finance, 2016, 19(6):1-30. [18] BUFFINGTON J, ELLIOTT RJ. American options with regime switching[J]. International Journal of Theoretical and Applied Finance, 2002, 5(5):497-514. |
[1] | 陈祥利. 脆弱期权的公司价值分形定价模型[J]. J4, 2010, 45(11): 109-114. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 40
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 63
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|