您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (5): 133-142.doi: 10.6040/j.issn.1671-9352.0.2025.018

• • 上一篇    

广义加性模型研究青岛沿海夏季大气汞的质量浓度变化特征

王国静1,李涛1,2*,甄洁博1,聂晓玲1,3,巩超凡1,王艳1   

  1. 1.山东大学环境科学与工程学院, 山东 青岛 266237;2.香港科技大学环境及可持续发展学部, 香港 九龙 999077;3.济南大学水利与环境学院, 山东 济南 250022
  • 发布日期:2025-05-19
  • 通讯作者: 李涛(1990— ),男,研究员,博士,研究方向为大气汞的多相迁移转化. E-mail:lt@sdu.edu.cn
  • 作者简介:王国静(1999— ),女,硕士研究生,研究方向为大气汞观测和模拟. E-mail:202212885@mail.sdu.edu.cn*通信作者:李涛(1990— ),男,研究员,博士,研究方向为大气汞的多相迁移转化. E-mail:lt@sdu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(42107116,22176112);山东省自然科学基金资助项目(ZR2020QB136)

Generalized additive models for characterizing atmospheric mercury mass concentration variations in the coastal area of Qingdao in summer

WANG Guojing1, LI Tao1,2*, ZHEN Jiebo1, NIE Xiaoling1,3, GONG Chaofan1, WANG Yan1   

  1. 1. School of Environmental Science and Engineering, Shandong University, Qingdao 266237, Shandong, China;
    2. Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Kowloon 99907, Hong Kong, China;
    3. School of Water Conservancy and Environment, University of Jinan, Jinan 250022, Shandong, China
  • Published:2025-05-19

摘要: 为研究青岛沿海大气汞的污染特征,解析污染源和气象条件的影响,于2023年夏季在青岛小麦岛开展了气态总汞(total gaseous mercury, TGM)的在线监测,构建广义加性模型(generalized additive model, GAM),以研究TGM质量浓度与空气污染物浓度和气象参数的线性与非线性关系。结果表明,TGM质量浓度为(2.94±0.75)ng·m-3,范围为1.74~6.49 ng·m-3,属中等污染水平。TGM受人为源排放、气象条件以及海陆风因素影响显著。单因素GAM模型结果表明,CO质量浓度、相对湿度(relative humidity, RH)和海平面气压(P0)对TGM质量浓度变化影响较大,且CO和NOx质量浓度与TGM之间呈现递增关系,表明人为源排放对TGM有显著贡献;而RH和P0与TGM之间呈递减关系,代表有利的气象条件对TGM的稀释或扩散作用。常规污染物-气象参数多因素GAM模型进一步提高拟合效果,对TGM质量浓度变化的解释度达到84.6%。空气污染物质量浓度与风向(wind direction, WD)、RH和边界层高度(boundary layer height, BLH)存在明显的交互作用。本研究可视化定量分析各因素及其交互作用对青岛沿海TGM质量浓度变化的影响,揭示污染传输和气象条件的共同作用,对沿海大气汞循环理解和污染控制有重要意义。

关键词: 大气汞, 广义加性模型, 人为排放, 气象因素, 交互作用

Abstract: To study the characteristics of atmospheric mercury pollution in coastal Qingdao and evaluate the influences of pollution sources and meteorological conditions, an online measurement of total gaseous mercury(TGM)was conducted on Xiaomai Island in Qingdao during the summer of 2023. A generalized additive model(GAM)was constructed to investigate the linear and nonlinear relationships between TGM and air pollutants as well as meteorological parameters. The results showed the mass concentration of TGM was(2.94±0.75)ng·m-3, within a range of 1.74-6.49 ng·m-3, indicating a moderate pollution level in China. TGM mass concentrations were significantly affected by anthropogenic emissions, meteorological conditions, and sea-land breezes. In the univariate GAM model results, CO concentration, relative humidity(RH), and sea-level pressure(P0)had substantial effects on TGM variations. Specifically, CO and NOx mass concentration exhibited increasing relationships with TGM, indicating that anthropogenic emissions significantly contribute to TGM levels. While RH and P0 showed decreasing relationships, indicating that favorable meteorological conditions contribute to the dilution or dispersion of TGM. Multivariate GAM model incorporating conventional pollutants and meteorological parameters further improved the fitting results, achieving an explanatory power of 84.6% for TGM variations. The interactions between atmospheric pollutants, WD, RH, and boundary layer height(BLH)significantly influenced TGM variability. This study quantitatively visualizes the complex impacts of various factors and their interactions on TGM variations, revealing the combined effects of pollution transport and meteorological conditions, which is critical for understanding the atmospheric mercury cycle and pollution control in coastal areas.

Key words: atmospheric mercury, generalized additive model, anthropogenic emissions, meteorological factors, interaction effects

中图分类号: 

  • X823
[1] DRISCOLL C T, MASON R P, CHAN H M, et al. Mercury as a global pollutant: sources, pathways, and effects[J]. Environmental Science & Technology, 2013, 47(10):4967-4783.
[2] ARIYA P A, AMYOT M, DASTOOR A, et al. Mercury physicochemical and biogeochemical transformation in the atmosphere and at atmospheric interfaces: a review and future directions[J]. Chemical Reviews, 2015, 115(10):3760-3802.
[3] SCHROEDER W H, MUNTHE J. Atmospheric mercury: an overview[J]. Atmospheric Environment, 1998, 32(5):809-822.
[4] SHIA R L, SEIGNEUR C, PAI P, et al. Global simulation of atmospheric mercury concentrations and deposition fluxes[J]. Journal of Geophysical Research: Atmospheres, 1999, 104(D19):23747-23760.
[5] PACYNA E G, PACYNA J M, STEENHUISEN F, et al. Global anthropogenic mercury emission inventory for 2000[J]. Atmospheric Environment, 2006, 40(22):4048-4063.
[6] PACYNA E G, PACYNA J M, SUNDSETH K, et al. Global emission of mercury to the atmosphere from anthropogenic sources in 2005 and projections to 2020[J]. Atmospheric Environment, 2010, 44(20):2487-2499.
[7] FU X W, LIU C, ZHANG H, et al. Isotopic compositions of atmospheric total gaseous mercury in 10 Chinese cities and implications for land surface emissions[J]. Atmospheric Chemistry and Physics, 2021, 21(9):6721-6734.
[8] SPROVIERI F, PIRRONE N, BENCARDINO M, et al. Atmospheric mercury concentrations observed at ground-based monitoring sites globally distributed in the framework of the GMOS network[J]. Atmospheric Chemistry and Physics, 2016, 16(18):11915-11935.
[9] PRETE D, DAVIS M, LU J L. Factors affecting the concentration and distribution of gaseous elemental mercury in the urban atmosphere of downtown Toronto[J]. Atmospheric Environment, 2018, 192:24-34.
[10] KENTISBEER J, LEESON S R, CLARK T, et al. Influences on and patterns in total gaseous mercury(TGM)at Harwell, England[J]. Environmental Science: Processes & Impacts, 2015, 17(3):586-595.
[11] SUN P, SONG Z C, QIN Y H, et al. Declines of gaseous element mercury concentrations at an urban site in eastern China caused by reductions of anthropogenic emission[J]. Atmospheric Environment, 2024, 317:120199.
[12] 陈筱佳,汪国瑞,霍俊涛,等. 上海郊区大气中汞的形态分布特征[J]. 环境污染与防治,2022,44(9):1196-1201. CHEN Xiaojia, WANG Guorui, HUO Juntao, et al. Speciation and distribution characteristics of mercury in the atmosphere in the suburbs of Shanghai[J]. Environmental Pollution & Control, 2022, 44(9):1196-1201.
[13] JAFFE D, PRESTBO E, SWARTZENDRUBER P, et al. Export of atmospheric mercury from Asia[J]. Atmospheric Environment, 2005, 39(17):3029-3038.
[14] PAN L, CARMICHAEL G R, ADHIKARY B, et al. A regional analysis of the fate and transport of mercury in east Asia and an assessment of major uncertainties[J]. Atmospheric Environment, 2008, 42(6):1144-1159.
[15] LIU M D, ZHANG Q R, YU C H, et al. Observation-based mercury export from rivers to coastal oceans in east Asia[J]. Environmental Science & Technology, 2021, 55(20):14269-14280.
[16] NGUYEN L S P, HIEN T T. Long-range atmospheric mercury transport from across east Asia to a suburban coastal area in southern Vietnam[J]. Bulletin of Environmental Contamination and Toxicology, 2023, 112(1):14.
[17] PACYNA J M, TRAVNIKOV O, DE SIMONE F, et al. Current and future levels of mercury atmospheric pollution on a global scale[J]. Atmospheric Chemistry and Physics, 2016, 16(19):12495-12511.
[18] SELIN N E, JACOB D J, YANTOSCA R M, et al. Global 3-D land-ocean-atmosphere model for mercury: present-day versus preindustrial cycles and anthropogenic enrichment factors for deposition[J]. Global Biogeochemical Cycles, 2008, 22(2):GB2011.
[19] YE Z Y, MAO H T, DRISCOLL C T, et al. Evaluation of CMAQ coupled with a state-of-the-art mercury chemical mechanism(CMAQ-new Hg-Br)[J]. Journal of Advances in Modeling Earth Systems, 2018, 10(3):668-690.
[20] HOROWITZ H M, JACOB D J, ZHANG Y X, et al. A new mechanism for atmospheric mercury redox chemistry: implications for the global mercury budget[J]. Atmospheric Chemistry and Physics, 2017, 17(10):6353-6371.
[21] SAIZ-LOPEZ A, SITKIEWICZ S P, ROCA-SANJUÁN D, et al. Photoreduction of gaseous oxidized mercury changes global atmospheric mercury speciation, transport and deposition[J]. Nature Communications, 2018, 9(1):4796.
[22] ZHANG Y Q, ZHANG J F, XIAO Y J, et al. Kinetic and mechanistic investigation of azathioprine degradation in water by UV, UV/H2O2 and UV/persulfate[J]. Chemical Engineering Journal, 2016, 302:526-534.
[23] HASTIE T, TIBSHIRANI R. Generalized additive models[J]. Statistical Science, 1986, 1(3):11-22.
[24] 贾彬,王彤,王琳娜,等. 广义可加模型共曲线性及其在空气污染问题研究中的应用[J]. 第四军医大学学报,2005(3):280-283. JIA Bin, WANG Tong, WANG Linna, et al. Concurvity in generalized additive models in study of air pollution[J]. Journal of the Fourth Military Medical University, 2005(3):280-283.
[25] ALDRIN M, HAFF I H. Generalised additive modelling of air pollution, traffic volume and meteorology[J]. Atmospheric Environment, 2005, 39(11):2145-2155.
[26] RUTTERFORD L A, SIMPSON S D, JENNINGS S, et al. Future fish distributions constrained by depth in warming seas[J]. Nature Climate Change, 2015, 5:569-573.
[27] REISS R. Temporal trends and weekend-weekday differences for benzene and 1,3-butadiene in Houston, Texas[J]. Atmospheric Environment, 2006, 40(25):4711-4724.
[28] DAVIS J M, SPECKMAN P. A model for predicting maximum and 8 h average ozone in Houston[J]. Atmospheric Environment, 1999, 33(16):2487-2500.
[29] GONG X, KAULFUS A, NAIR U, et al. Quantifying O3 impacts in urban areas due to wildfires using a generalized additive model[J]. Environmental Science and Technology, 2017, 51(22):13216-13223.
[30] WU Q R, TANG Y, WANG L, et al. Impact of emission reductions and meteorology changes on atmospheric mercury concentrations during the COVID-19 lockdown[J]. Science of the Total Environment, 2021, 750:142323.
[31] WU Q R, TANG Y, WANG S X, et al. Developing a statistical model to explain the observed decline of atmospheric mercury[J]. Atmospheric Environment, 2020, 243:117868.
[32] 贺祥,林振山. 基于GAM模型分析影响因素交互作用对PM2.5浓度变化的影响[J]. 环境科学,2017,38(1):22-32. HE Xiang, LIN Zhenshan. Interactive effects of the influencing factors on the changes of PM2.5 concentration based on GAM model[J]. Environmental Science, 2017, 38(1):22-32.
[33] LI T, MAO H T, WANG Z, et al. Field evidence for Asian outflow and fast depletion of total gaseous mercury in the polluted coastal atmosphere[J]. Environmental Science & Technology, 2023, 57(10):4101-4112.
[34] MARUMOTO K, HAYASHI M, TAKAMI A. Atmospheric mercury concentrations at two sites in the Kyushu Islands, Japan, and evidence of long-range transport from East Asia[J]. Atmospheric Environment, 2015, 117:147-155.
[35] LIU N, QIU G L, LANDIS M S, et al. Atmospheric mercury species measured in Guiyang, Guizhou province, southwest China[J]. Atmospheric Research, 2011, 100(1):93-102.
[36] 王珊珊,于瑞莲,赵莉斯,等. 宁波市不同形态大气汞含量特征及来源分析[J]. 环境化学,2017,36(2):274-281. WANG Shanshan, YU Ruilian, ZHAO Lisi, et al. Characteristics and sources of atmospheric species mercury in a coastal city, Ningbo, China[J]. Environmental Chemistry, 2017, 36(2):274-281.
[37] 李铭巾. 大连市大气中气态总汞的影响因素研究[J]. 环境与发展,2017,29(1):66-70. LI Mingjin. Research on influence factors of total gaseous mercury in the atmosphere of Dalian City[J]. Environment and Development, 2017, 29(1):66-70.
[38] SHI J Y, CHEN Y P, XU LL, et al. Measurement report: atmospheric mercury in a coastal city of south east China interannual variations and influencing factors[J]. Atmospheric Chemistry and Physics, 2022, 22(17):11187-11202.
[39] NIE X L, MAO H T, LI P Y, et al. Total gaseous mercury in a coastal city(Qingdao, China): influence of sea-land breeze and regional transport[J]. Atmospheric Environment, 2020, 235:117633.
[40] YIN X F, KANG S C, DE FOY B, et al. Multi-year monitoring of atmospheric total gaseous mercury at a remote high-altitude site(Nam Co, 4 730 m a.s.l.)in the inland Tibetan Plateau region[J]. Atmospheric Chemistry and Physics, 2018, 18(14):10557-10574.
[41] VARDÈ M, BARBANTE C, BARBARO E, et al. Characterization of atmospheric total gaseous mercury at a remote high-elevation site(Col Margherita Observatory, 2 543 m a.s.l.)in the Italian Alps[J]. Atmospheric Environment, 2022, 271:118917.
[42] JIANG J H, LIVESEY N J, SU H, et al. Connecting surface emissions, convective uplifting, and long-range transport of carbon monoxide in the upper troposphere: new observations from the aura microwave limb sounder[J]. Geophysical Research Letters, 2007, 34(18):2007GL030638.
[43] SNIDER G, RAOFIE F, ARIYA P A. Effects of relative humidity and CO(g)on the O3-initiated oxidation reaction of Hg0(g): kinetic & product studies[J]. Physical Chemistry Chemical Physics, 2008, 10(36):5616-5623.
[44] GRATZ L E, KEELER G J, MILLER E K. Long-term relationships between mercury wet deposition and meteorology[J]. Atmospheric Environment, 2009, 43(39):6218-6229.
[45] ZHU W Z, FU X W, FENG X B, et al. Annual time-series analyses of total gaseous mercury measurement and its impact factors on the Gongga Mountains in the southeastern fringe of the Qinghai-Tibetan Plateau[J]. Journal of Mountain Science, 2008, 5(1):17-31.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!