《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (5): 133-142.doi: 10.6040/j.issn.1671-9352.0.2025.018
• • 上一篇
王国静1,李涛1,2*,甄洁博1,聂晓玲1,3,巩超凡1,王艳1
WANG Guojing1, LI Tao1,2*, ZHEN Jiebo1, NIE Xiaoling1,3, GONG Chaofan1, WANG Yan1
摘要: 为研究青岛沿海大气汞的污染特征,解析污染源和气象条件的影响,于2023年夏季在青岛小麦岛开展了气态总汞(total gaseous mercury, TGM)的在线监测,构建广义加性模型(generalized additive model, GAM),以研究TGM质量浓度与空气污染物浓度和气象参数的线性与非线性关系。结果表明,TGM质量浓度为(2.94±0.75)ng·m-3,范围为1.74~6.49 ng·m-3,属中等污染水平。TGM受人为源排放、气象条件以及海陆风因素影响显著。单因素GAM模型结果表明,CO质量浓度、相对湿度(relative humidity, RH)和海平面气压(P0)对TGM质量浓度变化影响较大,且CO和NOx质量浓度与TGM之间呈现递增关系,表明人为源排放对TGM有显著贡献;而RH和P0与TGM之间呈递减关系,代表有利的气象条件对TGM的稀释或扩散作用。常规污染物-气象参数多因素GAM模型进一步提高拟合效果,对TGM质量浓度变化的解释度达到84.6%。空气污染物质量浓度与风向(wind direction, WD)、RH和边界层高度(boundary layer height, BLH)存在明显的交互作用。本研究可视化定量分析各因素及其交互作用对青岛沿海TGM质量浓度变化的影响,揭示污染传输和气象条件的共同作用,对沿海大气汞循环理解和污染控制有重要意义。
中图分类号:
[1] DRISCOLL C T, MASON R P, CHAN H M, et al. Mercury as a global pollutant: sources, pathways, and effects[J]. Environmental Science & Technology, 2013, 47(10):4967-4783. [2] ARIYA P A, AMYOT M, DASTOOR A, et al. Mercury physicochemical and biogeochemical transformation in the atmosphere and at atmospheric interfaces: a review and future directions[J]. Chemical Reviews, 2015, 115(10):3760-3802. [3] SCHROEDER W H, MUNTHE J. Atmospheric mercury: an overview[J]. Atmospheric Environment, 1998, 32(5):809-822. [4] SHIA R L, SEIGNEUR C, PAI P, et al. Global simulation of atmospheric mercury concentrations and deposition fluxes[J]. Journal of Geophysical Research: Atmospheres, 1999, 104(D19):23747-23760. [5] PACYNA E G, PACYNA J M, STEENHUISEN F, et al. Global anthropogenic mercury emission inventory for 2000[J]. Atmospheric Environment, 2006, 40(22):4048-4063. [6] PACYNA E G, PACYNA J M, SUNDSETH K, et al. Global emission of mercury to the atmosphere from anthropogenic sources in 2005 and projections to 2020[J]. Atmospheric Environment, 2010, 44(20):2487-2499. [7] FU X W, LIU C, ZHANG H, et al. Isotopic compositions of atmospheric total gaseous mercury in 10 Chinese cities and implications for land surface emissions[J]. Atmospheric Chemistry and Physics, 2021, 21(9):6721-6734. [8] SPROVIERI F, PIRRONE N, BENCARDINO M, et al. Atmospheric mercury concentrations observed at ground-based monitoring sites globally distributed in the framework of the GMOS network[J]. Atmospheric Chemistry and Physics, 2016, 16(18):11915-11935. [9] PRETE D, DAVIS M, LU J L. Factors affecting the concentration and distribution of gaseous elemental mercury in the urban atmosphere of downtown Toronto[J]. Atmospheric Environment, 2018, 192:24-34. [10] KENTISBEER J, LEESON S R, CLARK T, et al. Influences on and patterns in total gaseous mercury(TGM)at Harwell, England[J]. Environmental Science: Processes & Impacts, 2015, 17(3):586-595. [11] SUN P, SONG Z C, QIN Y H, et al. Declines of gaseous element mercury concentrations at an urban site in eastern China caused by reductions of anthropogenic emission[J]. Atmospheric Environment, 2024, 317:120199. [12] 陈筱佳,汪国瑞,霍俊涛,等. 上海郊区大气中汞的形态分布特征[J]. 环境污染与防治,2022,44(9):1196-1201. CHEN Xiaojia, WANG Guorui, HUO Juntao, et al. Speciation and distribution characteristics of mercury in the atmosphere in the suburbs of Shanghai[J]. Environmental Pollution & Control, 2022, 44(9):1196-1201. [13] JAFFE D, PRESTBO E, SWARTZENDRUBER P, et al. Export of atmospheric mercury from Asia[J]. Atmospheric Environment, 2005, 39(17):3029-3038. [14] PAN L, CARMICHAEL G R, ADHIKARY B, et al. A regional analysis of the fate and transport of mercury in east Asia and an assessment of major uncertainties[J]. Atmospheric Environment, 2008, 42(6):1144-1159. [15] LIU M D, ZHANG Q R, YU C H, et al. Observation-based mercury export from rivers to coastal oceans in east Asia[J]. Environmental Science & Technology, 2021, 55(20):14269-14280. [16] NGUYEN L S P, HIEN T T. Long-range atmospheric mercury transport from across east Asia to a suburban coastal area in southern Vietnam[J]. Bulletin of Environmental Contamination and Toxicology, 2023, 112(1):14. [17] PACYNA J M, TRAVNIKOV O, DE SIMONE F, et al. Current and future levels of mercury atmospheric pollution on a global scale[J]. Atmospheric Chemistry and Physics, 2016, 16(19):12495-12511. [18] SELIN N E, JACOB D J, YANTOSCA R M, et al. Global 3-D land-ocean-atmosphere model for mercury: present-day versus preindustrial cycles and anthropogenic enrichment factors for deposition[J]. Global Biogeochemical Cycles, 2008, 22(2):GB2011. [19] YE Z Y, MAO H T, DRISCOLL C T, et al. Evaluation of CMAQ coupled with a state-of-the-art mercury chemical mechanism(CMAQ-new Hg-Br)[J]. Journal of Advances in Modeling Earth Systems, 2018, 10(3):668-690. [20] HOROWITZ H M, JACOB D J, ZHANG Y X, et al. A new mechanism for atmospheric mercury redox chemistry: implications for the global mercury budget[J]. Atmospheric Chemistry and Physics, 2017, 17(10):6353-6371. [21] SAIZ-LOPEZ A, SITKIEWICZ S P, ROCA-SANJUÁN D, et al. Photoreduction of gaseous oxidized mercury changes global atmospheric mercury speciation, transport and deposition[J]. Nature Communications, 2018, 9(1):4796. [22] ZHANG Y Q, ZHANG J F, XIAO Y J, et al. Kinetic and mechanistic investigation of azathioprine degradation in water by UV, UV/H2O2 and UV/persulfate[J]. Chemical Engineering Journal, 2016, 302:526-534. [23] HASTIE T, TIBSHIRANI R. Generalized additive models[J]. Statistical Science, 1986, 1(3):11-22. [24] 贾彬,王彤,王琳娜,等. 广义可加模型共曲线性及其在空气污染问题研究中的应用[J]. 第四军医大学学报,2005(3):280-283. JIA Bin, WANG Tong, WANG Linna, et al. Concurvity in generalized additive models in study of air pollution[J]. Journal of the Fourth Military Medical University, 2005(3):280-283. [25] ALDRIN M, HAFF I H. Generalised additive modelling of air pollution, traffic volume and meteorology[J]. Atmospheric Environment, 2005, 39(11):2145-2155. [26] RUTTERFORD L A, SIMPSON S D, JENNINGS S, et al. Future fish distributions constrained by depth in warming seas[J]. Nature Climate Change, 2015, 5:569-573. [27] REISS R. Temporal trends and weekend-weekday differences for benzene and 1,3-butadiene in Houston, Texas[J]. Atmospheric Environment, 2006, 40(25):4711-4724. [28] DAVIS J M, SPECKMAN P. A model for predicting maximum and 8 h average ozone in Houston[J]. Atmospheric Environment, 1999, 33(16):2487-2500. [29] GONG X, KAULFUS A, NAIR U, et al. Quantifying O3 impacts in urban areas due to wildfires using a generalized additive model[J]. Environmental Science and Technology, 2017, 51(22):13216-13223. [30] WU Q R, TANG Y, WANG L, et al. Impact of emission reductions and meteorology changes on atmospheric mercury concentrations during the COVID-19 lockdown[J]. Science of the Total Environment, 2021, 750:142323. [31] WU Q R, TANG Y, WANG S X, et al. Developing a statistical model to explain the observed decline of atmospheric mercury[J]. Atmospheric Environment, 2020, 243:117868. [32] 贺祥,林振山. 基于GAM模型分析影响因素交互作用对PM2.5浓度变化的影响[J]. 环境科学,2017,38(1):22-32. HE Xiang, LIN Zhenshan. Interactive effects of the influencing factors on the changes of PM2.5 concentration based on GAM model[J]. Environmental Science, 2017, 38(1):22-32. [33] LI T, MAO H T, WANG Z, et al. Field evidence for Asian outflow and fast depletion of total gaseous mercury in the polluted coastal atmosphere[J]. Environmental Science & Technology, 2023, 57(10):4101-4112. [34] MARUMOTO K, HAYASHI M, TAKAMI A. Atmospheric mercury concentrations at two sites in the Kyushu Islands, Japan, and evidence of long-range transport from East Asia[J]. Atmospheric Environment, 2015, 117:147-155. [35] LIU N, QIU G L, LANDIS M S, et al. Atmospheric mercury species measured in Guiyang, Guizhou province, southwest China[J]. Atmospheric Research, 2011, 100(1):93-102. [36] 王珊珊,于瑞莲,赵莉斯,等. 宁波市不同形态大气汞含量特征及来源分析[J]. 环境化学,2017,36(2):274-281. WANG Shanshan, YU Ruilian, ZHAO Lisi, et al. Characteristics and sources of atmospheric species mercury in a coastal city, Ningbo, China[J]. Environmental Chemistry, 2017, 36(2):274-281. [37] 李铭巾. 大连市大气中气态总汞的影响因素研究[J]. 环境与发展,2017,29(1):66-70. LI Mingjin. Research on influence factors of total gaseous mercury in the atmosphere of Dalian City[J]. Environment and Development, 2017, 29(1):66-70. [38] SHI J Y, CHEN Y P, XU LL, et al. Measurement report: atmospheric mercury in a coastal city of south east China interannual variations and influencing factors[J]. Atmospheric Chemistry and Physics, 2022, 22(17):11187-11202. [39] NIE X L, MAO H T, LI P Y, et al. Total gaseous mercury in a coastal city(Qingdao, China): influence of sea-land breeze and regional transport[J]. Atmospheric Environment, 2020, 235:117633. [40] YIN X F, KANG S C, DE FOY B, et al. Multi-year monitoring of atmospheric total gaseous mercury at a remote high-altitude site(Nam Co, 4 730 m a.s.l.)in the inland Tibetan Plateau region[J]. Atmospheric Chemistry and Physics, 2018, 18(14):10557-10574. [41] VARDÈ M, BARBANTE C, BARBARO E, et al. Characterization of atmospheric total gaseous mercury at a remote high-elevation site(Col Margherita Observatory, 2 543 m a.s.l.)in the Italian Alps[J]. Atmospheric Environment, 2022, 271:118917. [42] JIANG J H, LIVESEY N J, SU H, et al. Connecting surface emissions, convective uplifting, and long-range transport of carbon monoxide in the upper troposphere: new observations from the aura microwave limb sounder[J]. Geophysical Research Letters, 2007, 34(18):2007GL030638. [43] SNIDER G, RAOFIE F, ARIYA P A. Effects of relative humidity and CO(g)on the O3-initiated oxidation reaction of Hg0(g): kinetic & product studies[J]. Physical Chemistry Chemical Physics, 2008, 10(36):5616-5623. [44] GRATZ L E, KEELER G J, MILLER E K. Long-term relationships between mercury wet deposition and meteorology[J]. Atmospheric Environment, 2009, 43(39):6218-6229. [45] ZHU W Z, FU X W, FENG X B, et al. Annual time-series analyses of total gaseous mercury measurement and its impact factors on the Gongga Mountains in the southeastern fringe of the Qinghai-Tibetan Plateau[J]. Journal of Mountain Science, 2008, 5(1):17-31. |
No related articles found! |
|