《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (10): 79-104.doi: 10.6040/j.issn.1671-9352.0.2025.087
• • 上一篇
周松1,宁华龙2,陈相燕2,冯玉娇2,徐文龙2*
ZHOU Song1, NING Hualong2, CHEN Xiangyan2, FENG Yujiao2, XU Wenlong2*
摘要: 自供电水凝胶传感器融合水凝胶材料特性与能量捕获技术,解决传统传感器舒适性和生物相容性差,以及依赖外部电源导致的体积笨重和续航不足等瓶颈问题。水凝胶凭借其高含水量、可调机械性能、自粘性及导电性,可与异质表面无缝贴合,灵敏精准捕获传感信号。自供电机制可将机械形变、热能、光能或生化能等转化为电能,实现了无源供能和器件的轻量化设计。因此,兼具舒适性、灵敏性及能量自给的自供电水凝胶传感器在健康监测、动态交互、环境感知等领域有重大应用潜力。本文系统总结聚合物水凝胶材料的分类、性质和自供电机理,介绍自供电水凝胶传感器的应用前沿,为未来器件设计和跨领域应用提供参考。
中图分类号:
[1] ZHANG Y, WANG H, KHAN S A, et al. Deep-learning-assisted thermogalvanic hydrogel fiber sensor for self-powered in-nostril respiratory monitoring[J]. Journal of Colloid and Interface Science, 2025, 678:143-149. [2] XI Y, CHENG S J, CHAO S Y, et al. Piezoelectric wearable atrial fibrillation prediction wristband enabled by machine learning and hydrogel affinity[J]. Nano Research, 2023, 16(9):11674-11681. [3] KIM J N, LEE J, LEE H, et al. Stretchable and self-healable catechol-chitosan-diatom hydrogel for triboelectric generator and self-powered tremor sensor targeting at Parkinson disease[J]. Nano Energy, 2021, 82:105705. [4] YANG Q N, YU M L, ZHANG H Y, et al. Triboelectric nanogenerator based on well-dispersed and oxide-free liquid metal-doped conductive hydrogel as self-powered wearable sensor for respiratory and thyroid cartilage signal monitoring[J]. Nano Energy, 2025, 134:110530. [5] GUO R, FANG Y S, WANG Z S, et al. Deep learning assisted body area triboelectric hydrogel sensor network for infant care[J]. Advanced Functional Materials, 2022, 32(35):2204803. [6] CUI X J, UNIVERSITY S N, et al. Thermoelectric gel enabling self-powered facial perception for expression recognition and health monitoring[J]. ACS Sensors, 2025, 10(1):537-544. [7] ZOU J J, MA Y N, LIU C X, et al. Self-powered sensor based on compressible ionic gel electrolyte for simultaneous determination of temperature and pressure[J]. InfoMat, 2024, 6(7):e12545. [8] DONG W T, SHENG K Q, HUANG B, et al. Stretchable self-powered TENG sensor array for human-robot interaction based on conductive ionic gels and LSTM neural network[J]. IEEE Sensors Journal, 2024, 24(22):37962-37969. [9] SHENG F F, YI J, SHEN S, et al. Self-powered smart arm training band sensor based on extremely stretchable hydrogel conductors[J]. ACS Applied Materials & Interfaces, 2021, 13(37):44868-44877. [10] YANG H, LI N, YANG K, et al. Coupling thermogalvanic and piezoresistive effects in a robust hydrogel for Deep-Learning-Assisted Self-Powered sign language and object recognition[J]. Chemical Engineering Journal, 2024, 488:150816. [11] ZHANG Y, TAO Y L, WANG K Q, et al. Two kinds of polyaniline fiber photo sensor with interdigital electrode and flexible hydrogel[J]. Journal of Applied Polymer Science, 2021, 138(26):50628. [12] WANG Y Q, CHEN P C, DING Y, et al. Multifunctional nano-conductive hydrogels with high mechanicalstrength, toughness and fatigue resistance as self-powered wearable sensors and deep learning-assisted recognition system[J]. Advanced Functional Materials, 2024, 34(49):2409081. [13] ZHANG W, WANG P L, JI X X, et al. Ultrastretchable and adhesive MXene-based hydrogel for high-performance strain sensing and self-powered application[J]. Composites Part A: Applied Science and Manufacturing, 2024, 177:107957. [14] ZHAO Y Q, LI L W, ZHANG J W, et al. A high-accuracy facial expression recognition system combining triboelectric hydrogel sensors with deep learning[J]. Advanced Functional Materials, 2025, 35(19):2418265. [15] HOU R N, XU L J, YU M L, et al. Piezoelectric-triboelectric hybrid nanogenerator based on tough, stretchable BaTiO3 doped antibacterial hydrogel for self-powered sensors[J]. Supramolecular Materials, 2025, 4:100096. [16] SHI Y D, GUAN Y J, LIU M J, et al. Tough, antifreezing, and piezoelectric organohydrogel as a flexible wearable sensor for human-machine interaction[J]. ACS Nano, 2024, 18(4):3720-3732. [17] HU Z R, LI J, WEI X T, et al. Enhancing strain-sensing properties of the conductive hydrogel by introducing PVDF-TrFE[J]. ACS Applied Materials & Interfaces, 2022, 14(40):45853-45868. [18] WANG R, UNIVERSITY Q, KIM S H, et al. Bio-inspired hydrogen bonding cross-linking strategy for DIW-printed carbon-based conductive hydrogels in wearable self-powered sensing systems[J]. ACS Applied Electronic Materials, 2025, 7(3):1217-1229. [19] ZOU J, JING X, LI S T, et al. MXene crosslinked hydrogels with low hysteresis conferred by sliding tangle island strategy[J]. Small, 2024, 20(35):2401622. [20] WANG H C, SHANG R Z, CHEN J W, et al. Flexible chitosan sensing hydrogel enabled by phytic acid coordination effect with high-conductivity and ultra-sensitivity for self-powered handwriting recognition and multimodal sensors[J]. Nano Energy, 2024, 128:109843. [21] CHAI X Y, TANG J H, LI Y Z, et al. Highly stretchable and stimulus-free self-healing hydrogels with multiple signal detection performance for self-powered wearable temperature sensors[J]. ACS Applied Materials & Interfaces, 2023, 15(14):18262-18271. [22] LI J M, XU T, MA Z, et al. Self-healable and stretchable PAAc/XG/Bi2Se0.3Te2.7 hybrid hydrogel thermoelectric materials[J]. Energy & Environmental Materials, 2024, 7(2):e12547. [23] LI R Z, LI D W, SUN J, et al. Pull-off dynamics of mushroom-shaped adhesive structures[J]. Journal of the Mechanics and Physics of Solids, 2024, 183:105519. [24] YIN J Y, JIA P X, REN Z Q, et al. Mechanically enhanced, environmentally stable, and bioinspired charge-gradient hydrogel membranes for efficient ion gradient power generation and linear self-powered sensing[J]. Advanced Materials, 2025, 37(24):2417944. [25] WICHTERLE O, LÍM D. Hydrophilic gels for biological use[J]. Nature, 1960, 185(4706):117-118. [26] ZHANG Q, WU M Y, HU X M, et al. A novel double-network, self-healing hydrogel based on hydrogen bonding and hydrophobic effect[J]. Macromolecular Chemistry and Physics, 2020, 221(3):1900320. [27] AHMED E M. Hydrogel: preparation, characterization, and applications: a review[J]. Journal of Advanced Research, 2015, 6(2):105-121. [28] WANG R Y, XU T, YANG Y X, et al. Tough polyurethane hydrogels with a multiple hydrogen-bond interlocked bicontinuous phase structure prepared byin situ water-induced microphase separation[J]. Advanced Materials, 2025, 37(6):2412083. [29] LIU X J, GAO M, CHEN J Y, et al. Recent advances in stimuli-responsive shape-morphing hydrogels[J]. Advanced Functional Materials, 2022, 32(39):2203323. [30] LU Y N, UNIVERSITY S Y, MO K, et al. High ion-conductive hydrogel: soft, elastic, with wide humiditytolerance and long-term stability[J]. ACS Applied Materials & Interfaces, 2024, 16(44):60992-61003. [31] DRURY J L, MOONEY D J. Hydrogels for tissue engineering: scaffold design variables and applications[J]. Biomaterials, 2003, 24(24):4337-4351. [32] LIU X Y, HE X, YANG B, et al. Dual physically cross-linked hydrogels incorporating hydrophobic interactions with promising repairability and ultrahigh elongation[J]. Advanced Functional Materials, 2021, 31(3):2008187. [33] CUI W, ZHENG Y, ZHU R J, et al. Strong tough conductive hydrogelsvia the synergy of ion-induced cross-linking and salting-out[J]. Advanced Functional Materials, 2022, 32(39):2204823. [34] IUDIN D, VAN STEENBERGEN M J, MASEREEUW R, et al. Shrinkable hydrogels through host-guest interactions: a robust approach to obtain tubular cell-laden scaffolds with small diameters[J]. Advanced Functional Materials, 2025, 35(10):2416522. [35] WANG Y H, XIANG Y Q, HUANG Q, et al. High-strength ionic hydrogel constructed by metal-free physical crosslinking strategy for enhanced uranium extraction from seawater[J]. Chemical Engineering Journal, 2024, 479:147875. [36] LIN M H, DAI Y, XIA F, et al. Advances in non-covalent crosslinked polymer micelles for biomedical applications[J]. Materials Science and Engineering: C, 2021, 119:111626. [37] YUE H G, WANG Y, LUO S C, et al.In situ continuous hydrogen-bonded engineering for intrinsically stretchable and healable high-mobility polymer semiconductors[J]. Science Advances, 2024, 10(40):eadq0171. [38] ZHAO J, CHEN R, CHENG D M, et al. Extremely ultrahigh stretchable starch-based hydrogels with continuous hydrogen bonding[J]. Advanced Functional Materials, 2025, 35(8):2415530. [39] WU X K, LI M, LI H N, et al. Autonomous underwater self-healable adhesive elastomers enabled by dynamical hydrophobic phase-separated microdomains[J]. Small, 2024, 20(35):2311131. [40] HOU J B, JIANG Z C, XIAO Y Y, et al. Room temperature shape self-adjustable tough hydrogel based on multi-physical crosslinking[J]. Chemical Engineering Journal, 2024, 499:156144. [41] LI W Z, ZHENG S J, ZOU X Y, et al. Tough hydrogels with isotropic and unprecedented crack propagation resistance[J]. Advanced Functional Materials, 2022, 32(43):2207348. [42] WEI L X, YANG Y, QIU X Y, et al. Self-polymerized tough and high-entanglement zwitterionic functional hydrogels[J]. Small, 2024, 20(50):2405789. [43] WU F, REN Y S, LV W Y, et al. Generating dual structurally and functionally skin-mimicking hydrogels by crosslinking cell-membrane compartments[J]. Nature Communications, 2024, 15:802. [44] LI H Z, PENG M Q, LI J Y, et al. SO2F2 mediated click chemistry enables modular disulfide formation in diverse reaction media[J]. Nature Communications, 2024, 15:8325. [45] LEI X X, ZOU C Y, HU J J, et al. Click-crosslinkedin situ hydrogel improves the therapeutic effect in wound infections through antibacterial, antioxidant and anti-inflammatory activities[J]. Chemical Engineering Journal, 2023, 461:142092. [46] KIM S H, KIM K, KIM B S, et al. Fabrication of polyphenol-incorporated anti-inflammatory hydrogel via high-affinity enzymatic crosslinking for wet tissue adhesion[J]. Biomaterials, 2020, 242:119905. [47] LAN T, DONG Y B, SHI J J, et al. Advancing self-healing soy protein hydrogel with dynamic Schiff base and metal-ligand bonds for diabetic chronic wound recovery[J]. Aggregate, 2024, 5(6):e639. [48] BI B, MA M S, LV S Y, et al.In-situ forming thermosensitive hydroxypropyl chitin-based hydrogel crosslinked by Diels-Alder reaction for three dimensional cell culture[J]. Carbohydrate Polymers, 2019, 212:368-377. [49] ZHANG D, TANG Y J, HE X M, et al. Bilayer hydrogels by reactive-induced macrophase separation[J]. ACS Macro Letters, 2023, 12(5):598-604. [50] WU Y, BEI Y, LI W J, et al. Advanced multifunctional hydrogels for enhanced wound healing through ultra-fast selenol-SNAr chemistry[J]. Advanced Science, 2024, 11(21):2400898. [51] LI J S, HU Z Q, ZHANG H W, et al. Poly [2] catenanes-based hydrogels prepared by hydroxyl-yne click chemistry[J]. Supramolecular Materials, 2024, 3:100076. [52] MILTON L A, DAVERN J W, HIPWOOD L, et al. Liver click dECM hydrogels for engineering hepatic microenvironments[J]. Acta Biomaterialia, 2024, 185:144-160. [53] LI P P, ZHONG Y B, WANG X, et al. Enzyme-regulated healable polymeric hydrogels[J]. ACS Central Science, 2020, 6(9):1507-1522. [54] KHATTAK S, ULLAH I, XIE H L, et al. Self-healing hydrogels as injectable implants: advances in translational wound healing[J]. Coordination Chemistry Reviews, 2024, 509:215790. [55] PAN H Y, TONG M D, WANG X M, et al. Fully biobased high-strength and high-toughness double cross-linked cellulose hydrogel for flexible electrolytes[J]. ACS Sustainable Chemistry & Engineering, 2024, 12(50):18231-18244. [56] HE C L, YIN M, ZHOU H, et al. Magnetic nanoactuator-protein fiber coated hydrogel dressing for well-balanced skin wound healing and tissue regeneration[J]. ACS Nano, 2025, 19(1):1713-1731. [57] WANG T T, XU B B, YU T, et al. PVA/chitosan-based multifunctional hydrogels constructed through multi-bonding synergies and their application in flexible sensors[J]. Carbohydrate Polymers, 2025, 350:123034. [58] ZÖLLER K, TO D, BERNKOP-SCHNÜRCH A. Biomedical applications of functional hydrogels: innovative developments, relevant clinical trials and advanced products[J]. Biomaterials, 2025, 312:122718. [59] WEI F L, ZHAI Y, WANG T F, et al. Stem cell-homing biomimetic hydrogel promotes the repair of osteoporotic bone defects through osteogenic and angiogenic coupling[J]. Science Advances, 2024, 10(44):eadq6700. [60] ABDULLAEV S S, ALTHOMALI R H, ABDU MUSAD SALEH E, et al. Synthesis of novel antibacterial and biocompatible polymer nanocomposite based on polysaccharide gum hydrogels[J]. Scientific Reports, 2023, 13:16800. [61] CAO X L, DENG Y H, XU Z Y, et al. A versatile natural gelatin-based hydrogel for emergency wound treatment through hemostasis, antibacterial, and anti-inflammation[J]. Biofabrication, 2025, 17(1):015017. [62] BARAKAT A, EHAGALI G A M, KAMOUN E A, et al. A novel chitosan-Schiff bases bearing a new quinoxaline moiety as an approach for potent antimicrobial agent: synthesis, characterization and in vitro assessments[J]. Carbohydrate Polymers, 2025, 352:123205. [63] LI X F, SHANG L L, LI D P, et al. High-strength, strong-adhesion, and antibacterial polyelectrolyte complex hydrogel films from natural polysaccharides[J]. Polymer Testing, 2022, 109:107547. [64] ZHANG Y F, WANG X Y, ZHU S H, et al. Serum albumin hydrogels designed by protein re-association for self-powered intelligent interactive systems[J]. Energy Storage Materials, 2024, 67:103266. [65] WANG W Y, GUO P S, LIU X, et al. Fully polymeric conductive hydrogels with low hysteresis and high toughness as multi-responsive and self-powered wearable sensors[J]. Advanced Functional Materials, 2024, 34(32):2316346. [66] HUANG H, CONG H T, LIN Z W, et al. Manipulation of conducting polymer hydrogels with different shapes and related multifunctionality[J]. Small, 2024, 20(25):2309575. [67] ZHANG Y, XIONG Y S, LI X S, et al. Oxidization and salting out synergistically induced highly elastic, conductive, and sensitive polyvinyl alcohol hydrogels[J]. Advanced Functional Materials, 2025, 35(6):2415207. [68] RIJNS L, RUTTEN M G T A, BELLAN R, et al. Synthetic, multi-dynamic hydrogels by uniting stress-stiffening and supramolecular polymers[J]. Science Advances, 2024, 10(47):eadr3209. [69] SINGH N K, WANG Y X, WEN C, et al. High-affinity one-step aptamer selection using a non-fouling porous hydrogel[J]. Nature Biotechnology, 2023, 42(8):1224-1231. [70] LU Y, YUE Y Y, DING Q Q, et al. Environment-tolerant ionic hydrogel-elastomer hybrids with robust interfaces, high transparence, and biocompatibility for a mechanical-thermal multimode sensor[J]. InfoMat, 2023, 5(4):e12409. [71] WANG X F, LI X C, WANG B B, et al. Preparation of salt-induced ultra-stretchable nanocellulose composite hydrogel for self-powered sensors[J]. Nanomaterials, 2023, 13(1):157. [72] CHOI S W, GUAN W, CHUNG K. Basic principles of hydrogel-based tissue transformation technologies and their applications[J]. Cell, 2021, 184(16):4115-4136. [73] HAN Z L, LU Y C, QU S X. Design of fatigue-resistant hydrogels[J]. Advanced Functional Materials, 2024, 34(21):2313498. [74] XU D, MENG X T, LIU S Y, et al. Dehydration regulates structural reorganization of dynamic hydrogels[J]. Nature Communications, 2024, 15:6886. [75] ALLEN M E, HINDLEY J W, BAXANI D K, et al. Hydrogels as functional components in artificial cell systems[J]. Nature Reviews Chemistry, 2022, 6(8):562-578. [76] JIA P X, ZHANG Q X, REN Z Q, et al. Self-powered flexible battery pressure sensor based on gelatin[J]. Chemical Engineering Journal, 2024, 479:147586. [77] ZHANG Y, PAN Y J, CHANG R H, et al. Advancing homogeneous networking principles for the development of fatigue-resistant, low-swelling and sprayable hydrogels for sealing wet, dynamic and concealed wounds in vivo[J]. Bioactive Materials, 2024, 34:150-163. [78] ZAKRZEWSKA A, ZARGARIAN S S, RINOLDI C, et al. Electrospun poly(vinyl alcohol)-based conductive semi-interpenetrating polymer network fibrous hydrogel: a toolbox for optimal cross-linking[J]. ACS Materials Au, 2023, 3(5):464-482. [79] HUA B Y, WEI H L, HU C W, et al. Preparation of pH/temperature-responsive semi-IPN hydrogels based on sodium alginate and humic acid as slow-release and water-retention fertilizers[J]. Polymer Bulletin, 2024, 81(5):4175-4198. [80] ZENOOZI S, MOHAMAD S G M, RAFIEE M. Synthesis and characterization of biocompatible semi-interpenetrating polymer networks based on polyurethane and cross-linked poly(acrylic acid)[J]. European Polymer Journal, 2020, 140:109974. [81] CHEN H Y, NIE L X, LI D P, et al. Robust, antifouling, and hydrophilic particle-based double-network hydrogel-PVDF interpenetrating microfiltration membrane[J]. Nano Letters, 2024, 24(50):16000-16007. [82] HAN S W, HU Y K, WEI J, et al. A semi-interpenetrating poly(ionic liquid)network-driven low hysteresis and transparent hydrogel as a self-powered multifunctional sensor[J]. Advanced Functional Materials, 2024, 34(32):2401607. [83] XUAN L Y, HOU Y Y, LIANG L, et al. Microgels for cell delivery in tissue engineering and regenerative medicine[J]. Nano-Micro Letters, 2024, 16(1):218. [84] YAO M M, WEI Z J, LI J J, et al. Microgel reinforced zwitterionic hydrogel coating for blood-contacting biomedical devices[J]. Nature Communications, 2022, 13:5339. [85] HUA M T, WU S W, MA Y F, et al. Strong tough hydrogels via the synergy of freeze-casting and salting out[J]. Nature, 2021, 590(7847):594-599. [86] WU S J, LIU Z, GONG C H, et al. Spider-silk-inspired strong and tough hydrogel fibers with anti-freezing and water retention properties[J]. Nature Communications, 2024, 15:4441. [87] TANG Y L, WU B T, LI J, et al. Biomimetic structural hydrogels reinforced by gradient twisted plywood architectures[J]. Advanced Materials, 2025, 37(1):2411372. [88] ADLY N, WEIDLICH S, SEYOCK S, et al. Printed microelectrode arrays on soft materials: from PDMS to hydrogels[J]. NPJ Flexible Electronics, 2018, 2:15. [89] ZHANG Y, WANG F F, YU Y T, et al. Multi-bioinspired hierarchical integrated hydrogel for passive fog harvesting and solar-driven seawater desalination[J]. Chemical Engineering Journal, 2023, 466:143330. [90] ALSAID Y, WU S W, WU D, et al. Tunable sponge-like hierarchically porous hydrogels with simultaneously enhanced diffusivity and mechanical properties[J]. Advanced Materials, 2021, 33(20):2008235. [91] LIANG D C, TANG J B, SUN Q, et al. Achieving ultra-low latent heat of water evaporation in capillary water by regulating hydrophilic groups and pore structure of cellulose/chitosan gel[J]. Carbohydrate Polymers, 2025, 353:123302. [92] FENG W J, WANG Z K. Tailoring the swelling-shrinkable behavior of hydrogels for biomedical applications[J]. Advanced Science, 2023, 10(28):2303326. [93] HUA J B, SU M R, SUN X D, et al. Hydrogel-based bioelectronics and their applications in health monitoring[J]. Biosensors, 2023, 13(7):696. [94] JIANG X Y, ZHOU X, DING K X, et al. Anti-swelling gel wearable sensor based on solvent exchange strategy for underwater communication[J]. Advanced Functional Materials, 2024, 34(34):2400936. [95] HU W, MARTIN F, JEANTET R, et al. Micromechanical characterization of hydrogels undergoing swelling and dissolution at alkaline pH[J]. Gels, 2017, 3(4):44. [96] ZHANG Y T, LIN X Y, WANG Z M, et al. Multiple hydrogen bonds enable high strength and anti-swelling cellulose-based ionic conductive hydrogels for flexible sensors[J]. Chemical Engineering Journal, 2024, 480:148318. [97] AN H, ZHANG M, HUANG Z, et al. Hydrophobic cross-linked chains regulate high wet tissue adhesion hydrogel with toughness, anti-hydration for dynamic tissue repair[J]. Advanced Materials, 2024, 36(8):2310164. [98] DOU X Y, WANG H F, YANG F, et al. One-step soaking strategy toward anti-swelling hydrogels with a stiff “armor”[J]. Advanced Science, 2023, 10(9):2206242. [99] ZHANG Z Y, YAO A F, RAFFA P. Transparent, highly stretchable, self-healing, adhesive, freezing-tolerant, and swelling-resistant multifunctional hydrogels for underwater motion detection and information transmission[J]. Advanced Functional Materials, 2024, 34(49):2407529. [100] YANG J W, ILLEPERUMA W, SUO Z G. Inelasticity increases the critical strain for the onset of creases on hydrogels[J]. Extreme Mechanics Letters, 2020, 40:100966. [101] LEI T D, WANG Y H, FENG Y Y, et al. PNIPAAm-based temperature responsive ionic conductive hydrogels for flexible strain and temperature sensing[J]. Journal of Colloid and Interface Science, 2025, 678:726-741. [102] LI X Y, GONG J P. Design principles for strong and tough hydrogels[J]. Nature Reviews Materials, 2024, 9(6):380-398. [103] SUN D Q, GAO Y, ZHOU Y F, et al. Enhance fracture toughness and fatigue resistance of hydrogels by reversible alignment of nanofibers[J]. ACS Applied Materials & Interfaces, 2022, 14(43):49389-49397. [104] ZHUANG Q N, MA Z J, GAO Y, et al. Liquid-metal-superlyophilic and conductivity-strain-enhancing scaffold for permeable superelastic conductors[J]. Advanced Functional Materials, 2021, 31(47):2105587. [105] ZHU R X, ZHU D D, ZHENG Z, et al. Tough double network hydrogels with rapid self-reinforcement and low hysteresis based on highly entangled networks[J]. Nature Communications, 2024, 15:1344. [106] LI J, CHEE H L, CHONG Y T, et al. Hofmeister effect mediated strong PHEMA-gelatin hydrogel actuator[J]. ACS Applied Materials & Interfaces, 2022, 14(20):23826-23838. [107] HAN Q Q, ZHANG C, GUO T M, et al. Hydrogel nanoarchitectonics of a flexible and self-adhesive electrode for long-term wireless electroencephalogram recording and high-accuracy sustained attention evaluation[J]. Advanced Materials, 2023, 35(12):2209606. [108] BAO S Y, WANG H Y, LIU B C, et al. Hydrogen-bonding-crosslinked polyzwitterionic hydrogels with extreme stretchability, ultralow hysteresis, self-adhesion, and antifreezing performance as flexible self-powered electronic devices[J]. Transactions of Tianjin University, 2025, 31(1):15-28. [109] LI W Z, YANG X Y, LAI P X, et al. Bio-inspired adhesive hydrogel for biomedicine: principles and design strategies[J]. Smart Medicine, 2022, 1(1):e20220024. [110] HUANG G, TANG Z F, PENG S W, et al. Modification of hydrophobic hydrogels into a strongly adhesive and tough hydrogel by electrostatic interaction[J]. Macromolecules, 2022, 55(1):156-165. [111] CHEN T G, LIANG X. A flexible triboelectric nanogenerator based on PDA/MXene/NIPAM hydrogel for mechanical energy harvesting and basketball posture monitoring[J]. AIP Advances, 2024, 14(4):045105. [112] GAO Y, SONG J F, LI S M, et al. Hydrogel microphones for stealthy underwater listening[J]. Nature Communications, 2016, 7:12316. [113] KANOKPAKA P, CHANG Y H, CHANG C C, et al. Enabling glucose adaptive self-healing hydrogel based triboelectric biosensor for tracking a human perspiration[J]. Nano Energy, 2023, 112:108513. [114] WU Y, LI M Y, HE R Y, et al. Photosynthetic live microorganism-incorporated hydrogels promote diabetic wound healing via self-powering and oxygen production[J]. Chemical Engineering Journal, 2024, 485:149545. [115] BAI M, CHEN Y R, ZHU L Y, et al. Bioinspired adaptive lipid-integrated bilayer coating for enhancing dynamic water retention in hydrogel-based flexible sensors[J]. Nature Communications, 2024, 15:10569. [116] LI Y, LIU S Y, ZHANG J J, et al. Elastic porous microspheres/extracellular matrix hydrogel injectable composites releasing dual bio-factors enable tissue regeneration[J]. Nature Communications, 2024, 15:1377. [117] HE X N, ZHANG B, LIU Q J, et al. Highly conductive and stretchable nanostructured ionogels for 3D printing capacitive sensors with superior performance[J]. Nature Communications, 2024, 15:6431. [118] LI M, GUAN Q W, LI C, et al. Self-powered hydrogel sensors[J]. Device, 2023, 1(1):100007. [119] XIAO Y N, LI Z H, XU B G. Flexible triboelectric nanogenerators based on hydrogel/g-C3N4 composites for biomechanical energy harvesting and self-powered sensing[J]. ACS Applied Materials & Interfaces, 2024, 16(11):13674-13684. [120] WANG Z S, LI N, YANG X R, et al. Thermogalvanic hydrogel-based e-skin for self-powered on-body dual-modal temperature and strain sensing[J]. Microsystems & Nanoengineering, 2024, 10:55. [121] REDDY M S P, PUNEETHA P, SHIM J, et al. Mechanically induced flexible two-dimensional PdSe2 sensors based on piezotronic effect[J]. Journal of Alloys and Compounds, 2025, 1017:179014. [122] GÜNDOGAN TÜRKER Ç, AKYÜZ F. Experimental analysis of pneumatic motion control application with piezo technology[J]. International Scientific and Vocational Studies Journal, 2022, 6(2):166-171. [123] DUERLOO K N, ONG M T, REED E J. Piezoelectricity in monolayers and bilayers of inorganic two-dimensional crystals[J]. MRS Online Proceedings Library, 2013, 1556(1):910. [124] XIN J, ZHENG Y Q, SHI E W. Piezoelectricity of zinc-blende and wurtzite structure binary compounds[J]. Applied Physics Letters, 2007, 91(11):112902. [125] LI Z M, HUANG H S, ZHANG T L, et al. First-principles study of electric field effects on the structure, decomposition mechanism, and stability of crystalline lead styphnate[J]. Journal of Molecular Modeling, 2014, 20(1):2072. [126] USHER T M, LEVIN I, DANIELS J E, et al. Electric-field-induced local and mesoscale structural changes in polycrystalline dielectrics and ferroelectrics[J]. Scientific Reports, 2015, 5:14678. [127] XIONG L Q, XIN Q, YANG G Q, et al. A PVDF-based organohydrogel for self-powered and anti-freezing sensor in electronic skin[J]. Microchemical Journal, 2025, 208:112580. [128] ZHANG C, JIANG Z P, SUN M D, et al. Nature-inspired helical piezoelectric hydrogels for energy harvesting and self-powered human-machine interfaces[J]. Nano Energy, 2025, 136:110755. [129] MAO Y W, LIN S T, ZHAO X H, et al. A large deformation viscoelastic model for double-network hydrogels[J]. Journal of the Mechanics and Physics of Solids, 2017, 100:103-130. [130] SUN M, CHEN K, HU H M, et al. A novel self-powered SERS platform PVDF-HFP/BZT-BCT@PDA/Ag based on piezoelectricity for sensitive detection of food contaminants[J]. Microchemical Journal, 2024, 207:112225. [131] LI F, CAI X Q, LIU G K, et al. Piezoionic SnSe nanosheets-double network hydrogel for self-powered strain sensing and energy harvesting[J]. Advanced Functional Materials, 2023, 33(32):2300701. [132] FANG Z, TIAN X, ZHENG F J, et al. Enhanced piezoelectric properties of Sm3+-modified PMN-PT ceramics and their application in energy harvesting[J]. Ceramics International, 2022, 48(6):7550-7556. [133] WANG F, QIU J J, GUAN S W, et al. An ultrasound-responsive hydrogel with piezoelectric-enhanced electrokinetic effect accelerates neurovascular regeneration for diabetic wound healing[J]. Materials Today, 2025, 84:48-64. [134] LI Y F, YANG R, MA B N, et al. High-performance flexible piezoelectric sensor using electrospun PVDF-BaTiO3 nanofibers for human motion monitoring and recognition[J]. Fibers and Polymers, 2025, 26(1):137-143. [135] FU R M, ZHONG X X, XIAO C R, et al. A stretchable, biocompatible, and self-powered hydrogel multichannel wireless sensor system based on piezoelectric barium titanate nanoparticles for health monitoring[J]. Nano Energy, 2023, 114:108617. [136] QIAO H M, ZHAO P, KWON O, et al. Mixed triboelectric and flexoelectric charge transfer at the nanoscale[J]. Advanced Science, 2021, 8(20):2101793. [137] MUSA U G, CEZAN S D, BAYTEKIN B, et al. The charging events in contact-separation electrification[J]. Scientific Reports, 2018, 8:2472. [138] JARVID M, JOHANSSON A, ENGLUND V, et al. High electron affinity: a guiding criterion for voltage stabilizer design[J]. Journal of Materials Chemistry A, 2015, 3(14):7273-7286. [139] OPITZ A, WILKE A, AMSALEM P, et al. Organic heterojunctions: contact-induced molecular reorientation, interface states and charge re-distribution[J]. Scientific Reports, 2016, 6:21291. [140] ZHAO S X, PETER C G S, ADAMIAK K. Comparison of conduction and induction charging in liquid spraying[J]. Journal of Electrostatics, 2005, 63(6/7/8/9/10):871-876. [141] BURGO T A L, SILVA C A, BALESTRIN L B S, et al. Friction coefficient dependence on electrostatic tribocharging[J]. Scientific Reports, 2013, 3:2384. [142] YUAN J X, ZOU X L, QIN Y, et al. Anti-freeze, anti-dehydrating and stretchable triboelectric materials enabled by covalent-like hydrogen bond interaction[J]. Nano Energy, 2024, 131:110215. [143] WEI X Y, ZHU G, WANG Z L. Surface-charge engineering for high-performance triboelectric nanogenerator based on identical electrification materials[J]. Nano Energy, 2014, 10:83-89. [144] YANG H M, LIU W L, XI Y, et al. Rolling friction contact-separation mode hybrid triboelectric nanogenerator for mechanical energy harvesting and self-powered multifunctional sensors[J]. Nano Energy, 2018, 47:539-546. [145] RAHMAN M T, RAHMAN M S, KUMAR H, et al. Metal-organic framework reinforced highly stretchable and durable conductive hydrogel-based triboelectric nanogenerator for biomotion sensing and wearable human-machine interfaces[J]. Advanced Functional Materials, 2023, 33(48):2303471. [146] ZHAO K, LV H R, MENG J K, et al. Triboelectrification-induced electricity in self-healing hydrogel for mechanical energy harvesting and ultra-sensitive pressure monitoring[J]. ACS Omega, 2022, 7(22):18816-18825. [147] HOSHINO K, YAMAMOTO H, TAMAI R, et al. N-type nanocomposite films combining SWCNTs, BiTe3 nanoplates, and cationic surfactant for pn-junction thermoelectric generators with self-generated temperature gradient under uniform sunlight irradiation[J]. Sensors, 2024, 24(21):7060. [148] FAN L, SU X, ZHU H L, et al. Degradation of methylene blue by hot electrons transfer in SnSe[J]. Advanced Materials Interfaces, 2023, 10(11):2202207. [149] ARISAWA H, FUJIMOTO Y, KIKKAWA T, et al. Observation of nonlinear thermoelectric effect in MoGe/Y3Fe5O12[J]. Nature Communications, 2024, 15:6912. [150] MARTÍN-GONZÁLEZ M, CABALLERO-CALERO O. Thermoelectric generators as an alternative for reliable powering of wearable devices with wasted heat[J]. Journal of Solid State Chemistry, 2022, 316:123543. [151] LEE H. The Thomson effect and the ideal equation on thermoelectric coolers[J]. Energy, 2013, 56:61-69. [152] YANG K, BAI C H, LIU B Y, et al. Self-powered, non-toxic, recyclable thermogalvanic hydrogel sensor for temperature monitoring of edibles[J]. Micromachines, 2023, 14(7):1327. [153] CHEN J H, ZHANG L, TU Y Y, et al. Wearable self-powered human motion sensors based on highly stretchable quasi-solid state hydrogel[J]. Nano Energy, 2021, 88:106272. [154] JIA M P, LUO L, ROLANDI M. Correlating ionic conductivity and microstructure in polyelectrolyte hydrogels for bioelectronic devices[J]. Macromolecular Rapid Communications, 2022, 43(6):2100687. [155] HASAN S W, SAID S M, SABRI M F M, et al. High thermal gradient in thermo-electrochemical cells by insertion of a poly(vinylidene fluoride)membrane[J]. Scientific Reports, 2016, 6:29328. [156] ZHAO D, FABIANO S, BERGGREN M, et al. Ionic thermoelectric gating organic transistors[J]. Nature Communications, 2017, 8:14214. [157] CHEN L Z, LOU J, RONG X H, et al. Super-stretching and high-performance ionic thermoelectric hydrogels based on carboxylated bacterial cellulose coordination for self-powered sensors[J]. Carbohydrate Polymers, 2023, 321:121310. [158] PRAYOGI S, SILVIANA F, ZAINUDDIN Z. Scientific explanation of the photoelectric effect using common objects[J]. Jurnal Pendidikan Fisika Indonesia, 2023, 19(2):128-135. [159] ZHANG J J, SU X D, SHEN M R, et al. Enlarging photovoltaic effect: combination of classic photoelectric and ferroelectric photovoltaic effects[J]. Scientific Reports, 2013, 3:2109. [160] LI J Z, WU M F, ZHANG H X, et al. Flexible self-powered photoelectrochemical photodetectors based on cellulose-based hydrogel electrolytes and Bi2O2Se nanosheets[J]. ACS Applied Nano Materials, 2024, 7(1):594-605. [161] BAI H Y, CHEN D W, ZHU H Y, et al. Photo-crosslinking ionic conductive PVA-SbQ/FeCl3 hydrogel sensors[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 648:129205. [162] LU P P, XU J Y, LIU S Y, et al. Facile synthesis of ultratough conductive gels with swelling and freezing resistance for flexible sensor applications[J]. Scientific Reports, 2025, 15:7335. [163] LI X X, CHEN L, YUAN S L, et al. Stretchable luminescent perovskite-polymer hydrogels for visual-digital wearable strain sensor textiles[J]. Advanced Fiber Materials, 2023, 5(5):1671-1684. [164] LIU H D, DU C F, LIAO L L, et al. Approaching intrinsic dy |
[1] | 代洪秀,王南,艾克百江·艾麦尔,林猛. GO/PPy/Pb3O4修饰电极的制备及其在电化学传感中的应用[J]. 山东大学学报(理学版), 2017, 52(9): 98-102. |
[2] | 及歆荣,侯翠琴,侯义斌,赵斌. 基于筛选机制的L1核学习机分布式训练方法[J]. 山东大学学报(理学版), 2016, 51(9): 137-144. |
[3] | 周先存, 黎明曦, 李瑞霞, 徐明鹃, 凌海波. 多点协作复制攻击检测研究[J]. 山东大学学报(理学版), 2015, 50(07): 54-65. |
[4] | 万智萍. 一种混合Das协议的无线传感器网络身份验证协议[J]. 山东大学学报(理学版), 2015, 50(05): 12-17. |
[5] | 张晶, 薛冷, 崔毅, 容会, 王剑平. 基于无线传感器网络的双混沌数据加密算法建模与评价[J]. 山东大学学报(理学版), 2015, 50(03): 1-5. |
[6] | 李国庆. 无线传感器网络基于联系数的信任评估模型[J]. 山东大学学报(理学版), 2014, 49(09): 123-128. |
[7] | 万润泽1,雷建军1,袁操2. 基于模糊聚类理论的无线传感器节点休眠优化策略[J]. J4, 2013, 48(09): 17-21. |
[8] | 赵泽茂1,刘洋1,张帆1,2,周建钦1,张品1. 基于角度和概率的WSN源位置隐私保护路由研究[J]. J4, 2013, 48(09): 1-9. |
[9] | 吕家亮1,2,3,王英龙1,3,崔焕庆1,魏诺2,3,郭强2,3. 基于微粒群优化的三维无线传感网定位算法研究[J]. J4, 2013, 48(05): 78-82. |
[10] | 郭晓东1,杜鹏1,张雪芬2. 一种WSN中能量有效的分布式检测和功率分配算法[J]. J4, 2012, 47(9): 60-64. |
[11] | 崔焕庆1,2,王英龙1*,吕家亮1,2,魏诺1. 基于随机微粒群算法的分布式节点定位方法[J]. J4, 2012, 47(9): 51-55. |
[12] | 刘梦君,刘树波*,刘泓晖,蔡朝晖,涂国庆. 异构无线传感器网络动态混合密钥管理方案研究[J]. J4, 2012, 47(11): 67-73. |
[13] | 姚武军1,丁谊1,魏立线1,杨晓元1,2. 基于RSSI的无线传感器网络ARQ差错控制策略[J]. J4, 2011, 46(9): 61-66. |
[14] | 李桂青,高仲合,王楠楠. 基于簇头集的无线传感器网络定向扩散协议[J]. J4, 2010, 45(11): 37-42. |
[15] | 郭文娟1,2,王英龙1,2,魏诺1,3,郭强1,3,周书旺1,2,3. 基于卡尔曼滤波的无线传感器网络时钟同步协议[J]. J4, 2010, 45(11): 32-36. |
|