《山东大学学报(理学版)》 ›› 2019, Vol. 54 ›› Issue (9): 105-113.doi: 10.6040/j.issn.1671-9352.1.2018.115
杨亚茹*,王永庆,张志斌,刘悦,程学旗
YANG Ya-ru*, WANG Yong-qing, ZHANG Zhi-bin, LIU Yue, CHENG Xue-qi
摘要: 随着社交媒体网站的日益普及,用户倾向于加入多个社交网络,作为社交媒体中的一项新兴工作,将社交网络的多个用户身份关联起来具有重要意义。通过研究目前有代表性的用户关联模型,提出了一个基于综合信息的用户关联模型(BiALP),该模型通过节点表达的方法学习网络的内在结构信息、属性信息和内容信息,以源网络和目标网络的节点表达为特征,以已关联用户对作为带标签数据,采用二分类监督学习的方式学习源网络与目标网络之间的关联关系。大量实验表明,BiALP模型与目前有代表性的其他用户关联模型相比效果有明显的提升(35%),能够实现更精确的用户关联。
中图分类号:
[1] MANIKONDA L, MEDURI V V, KAMBHAMPATI S. Tweeting the mind and instagramming the heart: exploring differentiated content sharing on social media[C] //Tenth International AAAI Conference on Web and Social Media. Cologne: AAAI Press, 2016: 639-642. [2] CARMAGNOLA F, CENA F. User identification for cross-system personalisation[J]. Information Sciences, 2009, 179(1/2):16-32. [3] DENG Z, SANG J, XU C. Personalized video recommendation based on cross-platform user modeling[C] // 2013 IEEE International Conference on Multimedia and Expo(ICME). San Jose: IEEE, 2013: 1-6. [4] YAN M, SANG J, MEI T, et al. Friend transfer: cold-start friend recommendation with cross-platform transfer learning of social knowledge[C] // 2013 IEEE International Conference on Multimedia and Expo(ICME). San Jose: IEEE, 2013: 1-6. [5] KUMAR S, ZAFARANI R, LIU H. Understanding user migration patterns in social media[C] // AAAI. San Francisco: AI Access Foundation, 2011, 11:8-11. [6] SHU K, WANG S H, TANG J L, et al. User identity linkage across online social networks[J]. ACM SIGKDD Explorations Newsletter, 2017, 18(2):5-17. [7] ZAFARANI R, LIU H. Connecting users across social media sites: a behavioral-modeling approach[C] // Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Chicago: ACM, 2013: 41-49. [8] MAN T, SHEN H, LIU S, et al. Predict anchor links across social networks via an embedding approach[C] // IJCAI. New York: International Joint Conferences on Artificial Intelligence, 2016, 16:1823-1829. [9] LIU S, WANG S, ZHU F, et al. Hydra: large-scale social identity linkage via heterogeneous behavior modeling[C] // Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data. Snowbird: ACM, 2014: 51-62. [10] RONG X. word2vec parameter learning explained[J]. arXiv preprint arXiv:1411.2738, 2014. [11] KLEMA V, LAUB A. The singular value decomposition: its computation and some applications[J]. IEEE Transactions on Automatic Control, 1980, 25(2):164-176. [12] CUI Y, PEI J, TANG G T, et al. Finding email correspondents in online social networks[J]. World Wide Web, 2013, 16(2):195-218. [13] TANG J, QU M, WANG M, et al. Line: large-scale information network embedding[C] // Proceedings of the 24th International Conference on World Wide Web. International World Wide Web Conferences Steering Committee. Florence: Association for Computing Machinery, 2015: 1067-1077. [14] RUCK D W, ROGERS S K, KABRISKY M, et al. The multilayer perceptron as an approximation to a Bayes optimal discriminant function[J]. IEEE Transactions on Neural Networks, 1990, 1(4):296-298. [15] KONG X, ZHANG J, YU P S. Inferring anchor links across multiple heterogeneous social networks[C] // Proceedings of the 22nd ACM International Conference on Information & Knowledge Management. San Francisco: ACM, 2013: 179-188. |
[1] | 张鹏,王素格,李德玉,王杰. 一种基于启发式规则的半监督垃圾评论分类方法[J]. 山东大学学报(理学版), 2017, 52(7): 44-51. |
[2] | 黄天意,祝峰. 基于流形学习的代价敏感特征选择[J]. 山东大学学报(理学版), 2017, 52(3): 91-96. |
[3] | 苏丰龙,谢庆华,黄清泉,邱继远,岳振军. 基于直推式学习的半监督属性抽取[J]. 山东大学学报(理学版), 2016, 51(3): 111-115. |
[4] | 杜红乐,张燕,张林. 不均衡数据集下的入侵检测[J]. 山东大学学报(理学版), 2016, 51(11): 50-57. |
[5] | 陈亚东, 洪宇, 杨雪蓉, 王潇斌, 姚建民, 朱巧明. 面向框架语义分析的目标词自动识别方法[J]. 山东大学学报(理学版), 2015, 50(07): 45-53. |
|