《山东大学学报(理学版)》 ›› 2023, Vol. 58 ›› Issue (12): 22-30.doi: 10.6040/j.issn.1671-9352.1.2022.8766
Xinsheng WANG(),Xiaofei ZHU*(),Chenghong LI
摘要:
提出了一种标签指导的多尺度图神经网络蛋白质作用关系(label guided multi-scale graph neural network protein-protein interactions, LGMG-PPI)预测方法, 不仅增强了数据的表征能力, 还引入了标签信息指导学习。首先, 通过图数据增强得到多尺度图表示, 并将多尺度图表示输入图神经网络得到多尺度蛋白质表示, 再引入对比学习进一步提高蛋白质表征能力; 其次, 构造自学习的标签关系图, 学习标签之间的关系, 得到标签的特征表示; 最后, 通过标签的特征表示, 对蛋白质作用关系的预测进行指导。在3个公开的数据集上进行了实验, 与最优基准方法相比, LGMG-PPI方法具有更好的性能, 相比最优基准方法, 在SHS27k、SHS148k和STRING这3个数据集上的micro-F1分数分别提升了2.01%、0.94%和0.93%。
中图分类号:
1 |
STELZL U , WORM U , LALOWSKI M , et al.A human protein-protein interaction network: a resource for annotating the proteome[J].Cell,2005,122(6):957-968.
doi: 10.1016/j.cell.2005.08.029 |
2 |
PETTA I , LIEVENS S , LIBERT C , et al.Modulation of protein-protein interactions for the development of novel therapeutics[J].Molecular Therapy,2016,24(4):707-718.
doi: 10.1038/mt.2015.214 |
3 |
SKRABANEK L , SAINI H K , BADER G D , et al.Computational prediction of protein-protein interactions[J].Molecular Biotechnology,2008,38(1):1-17.
doi: 10.1007/s12033-007-0069-2 |
4 |
FIELDS S , STERNGLANZ R .The two-hybrid system: an assay for protein-protein interactions[J].Trends in Genetics,1994,10(8):286-292.
doi: 10.1016/0168-9525(90)90012-U |
5 |
TONG A H Y , DREES B , NARDELLI G , et al.A combined experimental and computational strategy to define protein interaction networks for peptide recognition modules[J].Science,2002,295(5553):321-324.
doi: 10.1126/science.1064987 |
6 |
HO Y , GRUHLER A , HEILBUT A , et al.Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry[J].Nature,2002,415(6868):180-183.
doi: 10.1038/415180a |
7 | RAO V S , SRINIVAS K , SUJINI G N , et al.Protein-protein interaction detection: methods and analysis[J].International Journal of Proteomics,2014,2014(1):147648-147659. |
8 |
HUANG H , BADER J S .Precision and recall estimates for two-hybrid screens[J].Bioinformatics,2009,25(3):372-378.
doi: 10.1093/bioinformatics/btn640 |
9 |
KRIZHEVSKY A , SUTSKEVER I , HINTON G E .Imagenet classification with deep convolutional neural networks[J].Communications of the ACM,2017,60(6):84-90.
doi: 10.1145/3065386 |
10 |
HOCHREITER S , SCHMIDHUBER J .Long short-term memory[J].Neural Computation,1997,9(8):1735-1780.
doi: 10.1162/neco.1997.9.8.1735 |
11 |
CHEN M , JU C J T , ZHOU G , et al.Multifaceted protein-protein interaction prediction based on Siamese residual RCNN[J].Bioinformatics,2019,35(14):i305-i314.
doi: 10.1093/bioinformatics/btz328 |
12 | LV G F, HU Z Q, BI Y G et al. Learning unknown from correlations: graph neural network for inter-novel-protein interaction prediction[C]//Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence. San Francisco: Margan Kaufmann, 2021: 3677-3683. |
13 | BRUNA J, ZAREMBA W, SZLAM A, et al. Spectral networks and locally connected networks on graphs[C]//International Conference on Learning Representations. New Orleans: OpenReview. net, 2014. |
14 | DEFFERRARD M , BRESSON X , VANDERGHEYNST P .Convolutional neural networks on graphs with fast localized spectral filtering[J].Advances in Neural Information Processing Systems,2016,29(12):3844-3852. |
15 | VELICKOVIC P , CUCURULL G , CASANOVA A , et al.Graph attention networks[J].Stat,2017,1050(20):10. |
16 | XU K, HU W H, LESKOVEC J, et al. How powerful are graph neural networks?[C]//International Conference on Learning Representations. New Orleans: OpenReview. net, 2019. |
17 | YOU Y , CHEN T , SUI Y , et al.Graph contrastive learning with augmentations[J].Advances in Neural Information Processing Systems,2020,33,5812-5823. |
18 | CHEN Z M, WEI X S, WANG P, et al. Multi-label image recognition with graph convolutional networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 5177-5186. |
19 | DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[C]//NAACL. Minneapolis: Association for Computational Linguistics, 2019: 4171-4186. |
20 |
SZKLARCZYK D , GABLE A L , LYON D , et al.STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets[J].Nucleic Acids Research,2019,47(D1):D607-D613.
doi: 10.1093/nar/gky1131 |
21 |
GUO Y , YU L , WEN Z , et al.Using support vector machine combined with auto covariance to predict protein-protein interactions from protein sequences[J].Nucleic Acids Research,2008,36(9):3025-3030.
doi: 10.1093/nar/gkn159 |
22 | SILBERBERG Y , KUPIEC M , SHARAN R .A method for predicting protein-protein interaction types[J].PLoS One,2014,9(3):e90904. |
23 | WONG L, YOU Z H, LI S, et al. Detection of protein-protein interactions from amino acid sequences using a rotation forest model with a novel PR-LPQ descriptor[C]//International Conference on Intelligent Computing. Fuzhou: Springer, 2015: 713-720. |
24 | HASHEMIFAR S , NEYSHABUR B , KHAN A A , et al.Predicting protein-protein interactions through sequence-based deep learning[J].Bioinformatics,2018,34(17):i802-i810. |
25 | LI H , GONG X J , YU H , et al.Deep neural network based predictions of protein interactions using primary sequences[J].Molecules,2018,23(8):1923. |
[1] | 张斌艳,朱小飞,肖朝晖,黄贤英,吴洁. 基于半监督图神经网络的短文本分类[J]. 《山东大学学报(理学版)》, 2021, 56(5): 57-65. |
|