您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2016, Vol. 51 ›› Issue (3): 70-76.doi: 10.6040/j.issn.1671-9352.2.2015.065

• • 上一篇    下一篇

面向旅游人文信息集成的Web数据源选择

邓松   

  1. 江西财经大学软件与通信工程学院, 江西 南昌 330013
  • 收稿日期:2015-11-14 出版日期:2016-03-20 发布日期:2016-04-07
  • 作者简介:邓松(1982— ),男,博士,讲师,主要研究方向为Web数据管理、数据挖掘. E-mail:daonicool@sina.com
  • 基金资助:
    国家自然科学基金资助项目(61462037,61173146);江西省自然科学基金资助项目(20142BAB217014);江西省高等学校科技落地计划(产学研合作)项目(KJLD12022)

Web data source selection for humanities information integration of tourism

DENG Song   

  1. School of Software &
    Communication Engineering, Jiangxi University of Finance and Economics, Nanchang 330013, Jiangxi, China
  • Received:2015-11-14 Online:2016-03-20 Published:2016-04-07

摘要: 人文信息集成对提升一个景点的文化内涵有重要意义,为提升集成数据的效用和效率,提出了一种面向人文信息集成的数据源选择策略。基于名人、人文主题、信息长度和标记词构建人文信息摘要;基于人物扩展策略丰富人文摘要内容;基于名人人文信息增量设计了相应的数据源选择策略。利用领域数据集进行实验的结果表明所提方法准确率较高。

关键词: 数据源选择, 旅游, 摘要, 人文信息集成

Abstract: Humanities information integration is import to enhance the cultural connotation of a landscape. To enhance the effectiveness and efficiency of data integration, we propose a data source selection strategy for humanities-oriented information integration. First, building a humanities information summary based on celebrities, cultural themes, message length and mark words; Second, proposing an expansion strategy to rich cultural content of the summary; Finally, selecting data sources based on information gain of celebrities. We conduct a number of experiments based on the data collections of tourism, and the result shows that our methods accuracy is high.

Key words: summary, tourism, humanities information integration, data source selection

中图分类号: 

  • TP311
[1] 万常选, 邓松, 刘喜平, 等. Web数据源选择技术[J]. 软件学报, 2013, 24(4):781-797. WAN Changxuan, DENG Song, LIU Xiping, et al. Web data source selection technologies[J]. Journal of Software, 2013, 24(4):781-797.
[2] BALAKRISHNAN R, KAMBHAMPATI S. SourceRank: relevance and trust assessment for deep Web sources based on inter-source agreement[C] // Proceedings of the 20th International Conference on World Wide Web. New York, ACM, 2011:227-236.
[3] DONG X L, SAHA B, SRIVASTAVA D. Less is more: selecting sources wisely for integration[C] // Proceedings of the 39th International Conference on Very Large Data Bases. San Francisco: Morgan Kaufmann Publishers, 2013:37-48.
[4] REKATSINAS T, DONG X L. Finding quality in quantity: the challenge of discovering valuable sources for integration[C] // Proceedings of the 7th Biennial Conference on Innovative Data Systems Research. New York: ACM, 2015:1-7.
[5] 邓松, 万常选, 刘喜平, 等. 基于用户反馈的深网数据源选择[J]. 小型微型计算机系统, 2012, 33(11):2367-2371. DENG Song, WAN Changxuan, LIU Xiping, et al. Selection of deep Web data sources based on user feedback[J]. Journal of Chinese Computer Systems, 2012, 33(11):2367-2371.
[6] REKATSINAS T, DONG X L. Characterizing and selecting fresh data sources[C] //Proceedings of the 2014 ACM SIGMOD Intl Conference on Management of Data(SIGMOD 2014). New York:ACM, 2014:919-930.
[7] 范举, 周立柱. 基于关键词的深度万维网数据库的选择[J]. 计算机学报, 2011, 34(40):1797-1804. FAN Ju, ZHOU Lizhu. Keyword-based deep web database selection[J]. Chinese Journal of Computers, 2011, 34(40):1797-1804.
[8] WANG Y, ZUO W L, HE F L, et al. Ontology-assisted deep Web source selection[J]. Computer Science for Environmental Engineering and EcoInformatics, 2011, 159(2):66-71.
[9] 万常选,邓松,刘德喜,等. 面向混合类型关键词查询的非合作结构化深网数据源选择[J]. 计算机研究与发展, 2014, 51(4):905-917. WAN Changxuan, DENG Song, LIU Dexi,et al. Non-cooperative structured deep web selection based on hybrid type keyword retrieval[J].Journal of Computer Research and Development, 2014, 51(4):905-917.
[10] NGUYEN K, CAO J. K-Graphs: selecting top-k data sources for XML keyword queries[C] // Proceedings of the 22nd International Conference on Database and Expert Systems Applications. Heidelberg: Springer-Verlag, 2011: 425-439.
[11] 朱冠胜, 黄浩, 杨卫东. XML关键字检索系统的数据源选择[J].小型微型计算机系统, 2012, 33(6):1183-1188. ZHU Guansheng, HUANG Hoying Weidong. Keyword search based XML data source selection[J]. Journal of Chinese Computer Systems, 2012, 33(6):1183-1188.
[12] MARKOV I, AZZOPARDI L, CRESTANI F. Reducing the uncertainty in resource selection[C] // Proceedings of the 35th European Conference on IR Research. Heidelberg: Springer-Verlag, 2013: 507-519.
[13] HONG D, SI L. Search result diversification in resource selection for federated search[C] // Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2013: 613-622.
[14] 吴友政, 赵军, 徐波. 基于主题语言模型的句子检索算法[J]. 计算机研究与发展, 2007, 44(2):288-295. WU Youzheng, ZHAO Jun, XU Bo. Sentence retrieval with a topic-based language model [J].Journal of Computer Research and Development, 2007, 44(2):288-295.
[1] 张聪,裴家欢,黄锴宇,黄德根,殷章志. 基于语义图优化算法的中文微博观点摘要研究[J]. 山东大学学报(理学版), 2017, 52(7): 59-65.
[2] 丁长林,蔡东风,王裴岩. 基于分类算法的专利摘要文本分割技术[J]. J4, 2012, 47(5): 68-72.
[3] 肖雪梅1,张仁津1,2*. 基于SOA的旅游电子商务系统安全模型的研究[J]. J4, 2011, 46(9): 81-84.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!