您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2017, Vol. 52 ›› Issue (5): 75-84.doi: 10.6040/j.issn.1671-9352.2.2016.203

• • 上一篇    下一篇

一种基于隐私偏好的二次匿名位置隐私保护方法

毕晓迪1,2,梁英1,史红周1,田辉3   

  1. 1.中国科学院计算技术研究所泛在计算系统研究中心, 北京 100190;2.中国科学院大学, 北京 100190;3.工业和信息化部电信研究院, 北京 100142
  • 收稿日期:2016-08-18 出版日期:2017-05-20 发布日期:2017-05-15
  • 作者简介:毕晓迪(1992— ),女,硕士研究生,研究方向为位置隐私保护. E-mail: bixiaodi@ict.ac.cn
  • 基金资助:
    国家重点研发计划项目(2016YFB0800403);国家高技术研究发展计划(863计划)基金项目(2015AA015803);北京市科技计划课题项目(Z161100001616009)

Aparameterized location privacy protection method based on two-level Anonymity

BI Xiao-di1,2, LIANG Ying1, SHI Hong-zhou1, TIAN Hui3   

  1. 1. Research Center for Ubiquitous Computing Systems, Chinese Academy of Sciences, Beijing 100190, China;
    2. University of Chinese Academy of Sciences, Beijing 100190, China;
    3. China Academy of Telecommunication Research of MIIT, Beijing 100142, China
  • Received:2016-08-18 Online:2017-05-20 Published:2017-05-15

摘要: 针对基于位置的服务带来的用户位置隐私暴露问题,提出了一种基于隐私偏好的二次匿名位置隐私保护方法,融合k-匿名技术和差分隐私技术确保用户位置隐私,设计隐私等级划分策略,支持用户个性化设置隐私保护级别根据隐私级别确定k匿名集大小,通过基于位置熵的k匿名算法求解k-1个匿名点,使k匿名集的点具有最大概率相似性;在此基础上进一步求解获取位置服务的匿名位置,提出了基于差分隐私的匿名位置生成算法,在保护用户位置隐私的同时确保获取精确的位置服务。实验结果表明在用户隐私等级设置范围内,所提方法能有效兼顾位置隐私保护和LBS服务质量。

关键词: 位置隐私保护, k匿名, 差分隐私, 位置服务, 隐私等级

Abstract: Location based service brings the challenging problem of privacy leakage. The method proposes a parameterized location privacy protection method based on two-level anonymity for the problem. The system applies the k-anonymity and differential privacy methods with customized protection level for different users. This method selects the k-1 anonymous coordinates from the set, which achieves the best probability likelihood of the request, using location entropy based k-anonymity algorithm according to users’ protection level. Moreover, the system propose a differential privacy based method to generate a dummy position which is indistinguishable and in proper distance with the real position. The experiment results show that our method can protect users’ privacy as well as preserving the accuracy of location based service.

Key words: location privacy protection, k-anonymity, location based service, privacy level, differential privacy

中图分类号: 

  • TP311
[1] 张学军, 桂小林, 伍忠东. 位置服务隐私保护研究综述[J]. 软件学报, 2015(9):2373-2395. ZHANG Xuejun, GUI Xiaolin, WU Zhongdong. Privacy preservation for location—based services: a survey[J]. Journal of Software, 2015, 26(9):2373-2395.
[2] GAMBS S, KILLIJIAN M, NUÑEZ D. Show me how you move and I will tell you who you are[J]. Transactions on Data Privacy, 2010, 4(2):34-41.
[3] 王璐, 孟小峰. 位置大数据隐私保护研究综述[J]. 软件学报, 2014, 25(4):693-712. WANG Lu, MENG Xiaofeng. Location privacy preservation in big data era: a survey[J]. Journal of Software, 2014, 25(4):693-712.
[4] 潘晓, 肖珍, 孟小峰. 位置隐私研究综述[J]. 计算机科学与探索, 2007, 1(3):268-281. PAN Xiao, XIAO Zhen, MENG Xiaofeng. Survey of location privacy-preserving[J]. Journal of Computer Science and Frontiers, 2007, 1(3):268-281.
[5] FAWAZ K, SHIN K. Location privacy protection for smartphone users[C] // Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2014: 239-250.
[6] KOSTAS Chatzikokolakis. Location-guard[EB/OL].[2016-07-01.] https://github.com/chatziko/location-guard.
[7] SWEENEY L. k-anonymity: a model for protecting privacy[J]. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 2002, 10(05):557-570.
[8] GRUTESER M, GRUNWALD D. Anonymous usage of location-based services through spatial and temporal cloaking[C] // Proceedings of the 1st international conference on Mobile systems, applications and services. New York: ACM, 2003: 31-42.
[9] GEDIK B, LIU L. Protecting location privacy with personalized k-anonymity: Architecture and algorithms[J]. Mobile Computing, IEEE Transactions on, 2008, 7(1):1-18.
[10] 朱麟, 黄胜波. 不确定环境下轨迹k-匿名隐私保护[J]. 计算机应用, 2015, 35(12):3437-3441. ZHU Lin, HUANG Shengbo. k-anonymity privacy—preserving for trajectory in uncertain environment[J]. Journal of Computer Applications, 2015, 35(12):3437-3441.
[11] DWORK C. Differential privacy[M] // Automata, languages and programming. Berlin: Springer, 2006: 1-12.
[12] DWORK C, MCSHERRY F, NISSIM K, et al. Calibrating noise to sensitivity in private data analysis[M] // Theory of cryptography. Berlin: Springer, 2006: 265-284.
[13] MCSHERRY F, TALWAR K. Mechanism design via differential privacy[C] // Foundations of Computer Science, 2007. FOCS'07. 54th Annual IEEE Symposium on. 2007: 94-103. DOI Bookmark: http://doi.ieeecomputersociety.org/10.1109/FOCS.2007.66
[14] ANDRÉS M, BORDENABEN, CHATZIKOKOLAKIS K, et al. Geo-indistinguishability: Differential privacy for location-based systems[C] // Proceedings of the 2013 ACM SIGSAC conference on Computer & communications security. New York: ACM, 2013: 901-914.
[15] DEWRI R. Local differential perturbations: location privacy under approximate knowledge attackers[J]. Mobile Computing, IEEE Transactions on, 2013, 12(12):2360-2372.
[16] 倪巍伟,陈萧. 保护位置隐私近邻查询中隐私偏好问题研究[J].软件学报,2016. NI Weiwei, CHEN Xiao. User privacy preference support in location privacy-preserving nearest neighbor query. Ruan[J]. Journal of Software, 2016, 27(7):1805-1821.
[17] 康海燕, 杨孔雨, 陈建明. 基于K-匿名的个性化隐私保护方法研究[J]. 山东大学学报(理学版), 2014, 49(9):142-149. KANG Haiyan, YANG Kongyu, CHEN Jianming. A method of personalized privacy preservation based on K-anonymization[J]. Journal of Shandong University(Natural Science), 2014, 49(9):142-149.
[18] SHOKRI R, TRONCOSO C, DIAZ C, et al. Unraveling an old cloak: k-anonymity for location privacy[C] // Proceedings of the 9th annual ACM workshop on Privacy in the electronic society. New York: ACM, 2010: 115-118.
[19] ZHENG Y, LI Q, CHEN Y, et al. Understanding mobility based on GPS data[C] // Proceedings of the 10th international conference on Ubiquitous computing. New York: ACM, 2008: 312-321.
[20] ZHENG Y, ZHANG L, XIE X, et al. Mining interesting locations and travel sequences from GPS trajectories[C] // Proceedings of the 18th international conference on World wide web. New York: ACM, 2009: 791-800.
[1] 晏燕,郝晓弘. 差分隐私密度自适应网格划分发布方法[J]. 山东大学学报(理学版), 2018, 53(9): 12-22.
[2] 康海燕,马跃雷. 差分隐私保护在数据挖掘中应用综述[J]. 山东大学学报(理学版), 2017, 52(3): 16-23.
[3] 赵泽茂1,李林1,张帆1,2,张品1,周建钦1,王家波1. 基于分散子匿名区域的位置隐私保护方法[J]. J4, 2013, 48(7): 56-61.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!