您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2019, Vol. 54 ›› Issue (5): 8-20.doi: 10.6040/j.issn.1671-9352.2.2018.200

•   • 上一篇    下一篇

基于WiFi定位的区域人群轨迹模型

徐洋1,2(),孙建忠1,黄磊2,谢晓尧1   

  1. 1. 贵州师范大学贵州省信息与计算科学重点实验室,贵州 贵阳 550001
    2. 贵州师范大学—贵阳市公安局信息安全联合研究中心,贵州 贵阳 550001
  • 收稿日期:2018-07-19 出版日期:2019-05-20 发布日期:2019-05-09
  • 作者简介:徐洋(1983—),男,博士(后),教授,硕士生导师,主要研究方向为网络安全、信息系统安全. E-mail:xy@gznu.edu.cn
  • 基金资助:
    国家自然科学基金重点项目(61332019);中央引导地方科技发展专项资金项目(黔科中引地20184008);贵州省科技合作计划重点项目(黔科合LH字20157763);住房和城乡建设部科学技术计划项目(2016-K3-009);全国统计科学研究项目(2016LY81)

Trajectory model of area crowd based on WiFi positioning

Yang XU1,2(),Jian-zhong SUN1,Lei HUANG2,Xiao-yao XIE1   

  1. 1. Key Laboratory of Information and Computing Science of Guizhou Province, Guizhou Normal University, Guiyang 550001, Guizhou, China
    2. Guizhou Normal University-Guiyang Public Security Bureau Joint Research Centre for Information Security, Guiyang 550001, Guizhou, China
  • Received:2018-07-19 Online:2019-05-20 Published:2019-05-09
  • Supported by:
    国家自然科学基金重点项目(61332019);中央引导地方科技发展专项资金项目(黔科中引地20184008);贵州省科技合作计划重点项目(黔科合LH字20157763);住房和城乡建设部科学技术计划项目(2016-K3-009);全国统计科学研究项目(2016LY81)

摘要:

针对传统的室内WiFi定位方法难以解决大型活动及区域间流动人群轨迹分析需要这一问题,提出了基于三边测量定位和信号强度(RSSI)的应用于大型场馆、复杂环境下的人群定位新方法,实现区域内人员定位、区域内外人群划分、区域内人群流量分析。使用基于一种概率统计预测算法进行人群轨迹预测,建立了WiFi区域内人群轨迹模型,通过进一步建立的跨区域人群移动轨迹模型,实现大跨度区域间人群流动分析。通过搭建WiFi区域人群轨迹模型验证系统,使用2016年贵阳数博会数据,进行了数据可视化分析,证明了模型的有效性。

关键词: WiFi定位, 人群轨迹, 三边测量定位, 信号强度, 位置指纹

Abstract:

The existing indoor WiFi positioning methods are difficult to resolve the need of crowd trajectory analysis in the large-scale activities and inter-regional. Aiming at this problem, a new crowd location method based on trilateration measurement and signal strength indication (RSSI) for large-scale venues and complex environments is proposed. Crowd positioning in the region, crowd division inside and outside the region, and crowd flow analysis in the region can be achieved. A prediction algorithm based on probability and statistics is used to predict crowd trajectories. A crowd trajectory model in WiFi area is established. A cross regional crowd mobility trajectory model is further established to analyse the flow of crowd in large area inter regional. A proving system of WiFi regional crowd trajectory model is established. Using the data of 2016 Guiyang International Big Data Expo, data visualization analysis is carried out. In this way, the validity of the model is proved.

Key words: WiFi positioning, crowd trajectory, trilateration, received signal strength indication, location fingerprint

中图分类号: 

  • TP391

图1

三边测量定位示意图"

图2

位置指纹定位原理"

图3

定位示意图"

图4

场馆示意图"

图5

场馆边缘AP点误差图"

图6

人群流量统计模型"

图7

区域划分示意图"

图8

图G的邻接矩阵"

图9

热点区域轨迹预测模型"

图10

不同区域内人群移动轨迹模型"

表1

MAC存储表"

idstationMacchannelDetect ApNameRSSInoisefirstDetectTimelastDetectTime
15C:F7:C3:A2:**: **11ap203-80-1025/25/2016 00:00:005/26/2016 00:00:00
200:18:4C:04: **:**6ap207-85-915/25/2016 00:00:005/26/2016 00:00:00
348:62:76:18: **:**8ap203-85-925/25/2016 00:00:005/26/2016 00:00:00
448:62:76:18: **:**8ap203-84-925/25/2016 00:00:005/26/2016 00:00:00
5B8:B4:2E:33: **:**11ap202-66-905/25/2016 00:00:005/26/2016 00:00:00

表2

AP点信息存储表"

cs_idcs_apAliascs_macAddresscs_longcs_latcs_att
162ap3738:91:D5:B6:**:**109.*26.******
163ap33838:91:D5:B6:**:**109.*26.******
164ap31938:91:D5:B6:**:**109.*26.******
166ap34038:91:D5:B6:**:**109.*26.******
168ap2638:91:D5:B6:**:**109.*26.******

图11

数博会期间场馆人数"

图12

场馆内实时人群统计"

图13

每个展馆内实时人数统计"

图14

不同展台的人群热度分布"

1 周傲英, 杨彬, 金澈清, 等. 基于位置的服务:架构与进展[J]. 计算机学报, 2011, 34 (7): 1155- 1171.
ZHOU Aoying , YANG Bin , JIN Cheqing , et al. Location-based services: architecture and progress[J]. Chinese Journal of Computers, 2011, 34 (7): 1155- 1171.
2 王威, 胡英男. 北斗卫星导航系统服务精度评估[J]. 天文学报, 2017, 58 (2): 76- 85.
WANG Wei , HU Yingnan . Accuracy performance evaluation of beidou navigation satellite system[J]. Acta Astronomica Sinica, 2017, 58 (2): 76- 85.
3 贺磊南, 卢虎, 姬正洲. WiFi/PDR室内分层三维定位技术[J]. 西安电子科技大学学报(自然科学版), 2017, 44 (4): 167- 173.
doi: 10.3969/j.issn.1001-2400.2017.04.029
HE Leinan , LU Hu , JI Zhengzhou . 3D indoor floor localization based on WiFi and PDR[J]. Journal of Xidian University(Natural Science), 2017, 44 (4): 167- 173.
doi: 10.3969/j.issn.1001-2400.2017.04.029
4 傅予力, 杨帅, 陈培林, 等. 室内区域性WiFi定位EKNN算法设计[J]. 华南理工大学学报(自然科学版), 2017, 45 (10): 87- 92, 99.
doi: 10.3969/j.issn.1000-565X.2017.10.012
FU Yuli , YANG Shuai , CHEN Peilin , et al. Design of EKNN algorithm for regional WiFi localization[J]. Journal of South China University of Technology(Natural Science Edition), 2017, 45 (10): 87- 92, 99.
doi: 10.3969/j.issn.1000-565X.2017.10.012
5 李桢, 黄劲松. 基于RSSI抗差滤波的WiFi定位[J]. 武汉大学学报(信息科学版), 2016, 41 (3): 361- 366.
LI Zhen , HUANG Jingsong . WiFi positioning using robust filtering with RSSI[J]. Geomatics and Information Science of Wuhan University, 2016, 41 (3): 361- 366.
6 陈国良, 张言哲, 汪云甲, 等. WiFi-PDR室内组合定位的无迹卡尔曼滤波算法[J]. 测绘学报, 2015, 44 (12): 1314- 1321.
CHEN Guoliang , ZHANG Yanzhe , WANG Yunjia , et al. Unscented Kalman filter algorithm for WiFi-PDR integrated indoor positioning[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44 (12): 1314- 1321.
7 许利, 花向红, 邱卫宁, 等. WiFi定位邻近个数对位置估计的影响[J]. 测绘地理信息, 2017, 42 (1): 42- 45.
XU Li , HUA Xianghong , QIU Weining , et al. Effect of adjacent number using WiFi position on position estimation[J]. Journal of Geomatics, 2017, 42 (1): 42- 45.
8 吴泽泰, 蔡仁钦, 徐书燕, 等. 基于K近邻法的WiFi定位研究与改进[J]. 计算机工程, 2017, 43 (3): 289- 293.
doi: 10.3969/j.issn.1000-3428.2017.03.048
WU Zetai , CAI Renqin , XU Shuyan , et al. Research and improvement of WiFi positioning based on K nearest neighbor method[J]. Computer Engineering, 2017, 43 (3): 289- 293.
doi: 10.3969/j.issn.1000-3428.2017.03.048
9 周瑞, 李志强, 罗磊. 基于粒子滤波的WiFi行人航位推算融合室内定位[J]. 计算机应用, 2016, 36 (5): 1188- 1191, 1200.
ZHOU Rui , LI Zhiqiang , LUO Lei . WiFi-pedestrian dead reckoning fused indoor positioning based on particle filtering[J]. Journal of Computer Applications, 2016, 36 (5): 1188- 1191, 1200.
10 ZHENG Y . Trajectory data mining: an overview[J]. ACM Transactions on Intelligent Systems and Technology, 2015, 6 (3): 1- 41.
11 LUO Ying , ZHANG Qun , HONG Wen , et al. Waveform design and high-resolution imaging of cognitive radar based on compressive sensing[J]. Science China Information Sciences, 2012, 55 (11): 2590- 2603.
doi: 10.1007/s11432-011-4527-x
12 QIAO S J , SHEN D Y , WANG X T , et al. A self-adaptive parameter selection trajectory prediction approach via hidden markov models[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16 (1): 284- 296.
13 乔少杰, 李天瑞, 韩楠, 等. 大数据环境下移动对象自适应轨迹预测模型[J]. 软件学报, 2015, 26 (11): 2869- 2883.
QIAO Shaojie , LI Tianrui , HAN Nan , et al. Self-adaptive trajectory prediction model for moving objects in big data environment[J]. Journal of Software, 2015, 26 (11): 2869- 2883.
14 戴蓉蓉, 朱海红, 李霖. 基于ARIMA模型的市内人群移动预测[J]. 测绘工程, 2016, 25 (2): 38- 41.
doi: 10.3969/j.issn.1006-7949.2016.02.008
DAI Rongrong , ZHU Haihong , LI Lin . Intra-urban human mobility prediction based on ARIMA model[J]. Engineering of Surveying and Mapping, 2016, 25 (2): 38- 41.
doi: 10.3969/j.issn.1006-7949.2016.02.008
15 蔡牧夫.开放型公共场所踩踏事件人群密度分析与风险预警研究及应用[D].广州:暨南大学, 2017.
CAI Mufu. The research and application of the crowd density analysis and risk early warning of stampedes occurred in open public places[D]. Guangzhou: Jinan University, 2017.
16 李致昊, 朱闽峰, 黄兆嵩, 等. 一个基于基站轨迹数据的城市移动模式可视分析系统[J]. 计算机辅助设计与图形学学报, 2018, 30 (1): 68- 78.
LI Zhihao , ZHU Minfeng , HUANG Zhaosong , et al. Trajectory2Vec: a visual analytics approach for urban mobility patterns based on mobile phone data[J]. Journal of Computer-Aided Design & Computer Graphics, 2018, 30 (1): 68- 78.
17 蔡绍滨, 李希, 田鹰, 等. 基于圆形选择技术的循环三边组合测量法的研究[J]. 计算机研究与发展, 2010, 47 (2): 238- 244.
CAI Shaobin , LI Xi , TIAN Ying , et al. Alternating combination trilateration based on circle-selection[J]. Journal of Computer Research and Development, 2010, 47 (2): 238- 244.
18 刁英斐.无线传感器网络中的定位问题研究[D].济南:山东大学, 2013.
DIAO Yingfei. Localization problem in wireless sensor network[D]. Jinan: Shandong University, 2013.
19 田洪亮, 钱志鸿, 梁潇, 等. 离散度WKNN位置指纹Wi-Fi定位算法[J]. 哈尔滨工业大学学报, 2017, 49 (5): 94- 99.
TIAN Hongliang , QIAN Zhihong , LIANG Xiao , et al. Discrete degree WKNN location fingerprinting algorithm based on Wi-Fi[J]. Journal of Harbin Institute of Technology, 2017, 49 (5): 94- 99.
20 杨兰. LTE网络位置指纹定位技术研究与定位系统设计[D].成都:西南交通大学, 2017.
YANG Lan. Research and location system design of fingerprint location technology for LTE network location[D]. Chengdu: Southwest Jiaotong University, 2017.
21 BAHL P, PADMANABHAN V N. RADAR: an in-building RF-based user location and tracking system[C]//Proceedings IEEE INFOCOM 2000. Conference on Computer Communications. Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies.[S.l.]: IEEE 2000: 775-784. doi: 10.1109/INFCOM.2000.832252.
22 NI W , WANG Z X . Indoor location algorithm based on the measurement of the received signal strength[J]. Frontiers of Electrical and Electronic Engineering in China, 2006, 1 (1): 48- 52.
doi: 10.1007/s11460-005-0008-6
23 LIU Q, WU S, WANG L, et al. Predicting the next location: a recurrent model with spatial and temporal contexts[C]// Proc. of the 30th AAAI Conf on Artificial Intelligence.[S.l.]: IEEE, 2016: 194-200.
[1] 姚武军1,丁谊1,魏立线1,杨晓元1,2. 基于RSSI的无线传感器网络ARQ差错控制策略[J]. J4, 2011, 46(9): 61-66.
[2] 张先毅,王英龙,郭 强,赵洪磊 . 基于室内办公环境的WSN信道衰落模型的分析[J]. J4, 2008, 43(11): 44-47 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨军. 金属基纳米材料表征和纳米结构调控[J]. 山东大学学报(理学版), 2013, 48(1): 1 -22 .
[2] 何海伦, 陈秀兰*. 变性剂和缓冲系统对适冷蛋白酶MCP-01和中温蛋白酶BP-01构象影响的圆二色光谱分析何海伦, 陈秀兰*[J]. 山东大学学报(理学版), 2013, 48(1): 23 -29 .
[3] 赵君1,赵晶2,樊廷俊1*,袁文鹏1,3,张铮1,丛日山1. 水溶性海星皂苷的分离纯化及其抗肿瘤活性研究[J]. J4, 2013, 48(1): 30 -35 .
[4] 孙小婷1,靳岚2*. DOSY在寡糖混合物分析中的应用[J]. J4, 2013, 48(1): 43 -45 .
[5] 罗斯特,卢丽倩,崔若飞,周伟伟,李增勇*. Monte-Carlo仿真酒精特征波长光子在皮肤中的传输规律及光纤探头设计[J]. J4, 2013, 48(1): 46 -50 .
[6] 杨伦,徐正刚,王慧*,陈其美,陈伟,胡艳霞,石元,祝洪磊,曾勇庆*. RNA干扰沉默PID1基因在C2C12细胞中表达的研究[J]. J4, 2013, 48(1): 36 -42 .
[7] 冒爱琴1, 2, 杨明君2, 3, 俞海云2, 张品1, 潘仁明1*. 五氟乙烷灭火剂高温热解机理研究[J]. J4, 2013, 48(1): 51 -55 .
[8] 杨莹,江龙*,索新丽. 容度空间上保费泛函的Choquet积分表示及相关性质[J]. J4, 2013, 48(1): 78 -82 .
[9] 李永明1, 丁立旺2. PA误差下半参数回归模型估计的r-阶矩相合[J]. J4, 2013, 48(1): 83 -88 .
[10] 唐风琴1,白建明2. 一类带有广义负上限相依索赔额的风险过程大偏差[J]. J4, 2013, 48(1): 100 -106 .