《山东大学学报(理学版)》 ›› 2022, Vol. 57 ›› Issue (7): 85-93.doi: 10.6040/j.issn.1671-9352.2.2021.117
• • 上一篇
张杰1,2,彭国军1,2*,杨秀璋1,2
ZHANG Jie1,2, PENG Guo-jun1,2*, YANG Xiu-zhang1,2
摘要: 针对恶意逃避样本的逃避行为进行分析,归纳并总结了恶意逃避样本常用的逃避API函数集,提出了一种基于动态API调用序列和机器学习的恶意逃避样本检测方法。在特征工程处理阶段,提出了逃避API函数权重衡量算法,并通过优化词频处理来增强逃避API函数的特征向量值,最终本文方法检测恶意逃避样本的准确率可达95.09%。
中图分类号:
[1] DINABURG A, ROYAL P, SHARIF M,et al. Ether: malware analysis via hardware virtualization extensions[C] //Proceedings of the 15th ACM conference on Computer and Communications Security. [S.l.] : ACM, 2008: 51-62. [2] ALAZAB M. Profiling and classifying the behavior of malicious codes[J]. Journal of Systems & Software, 2014, 100:91-102. [3] ALAZAB M, VENKATARAMAN S, WATTERS P. Towards understanding malware behaviour by the extraction of API calls[C] //2010 Second Cybercrime and Trustworthy Computing Workshop. [S.l.] : IEEE, 2010: 52-59. [4 ] CESARE S, YANG X, ZHOU W. Control flow-based malware variant detection[J]. IEEE Transactions on Dependable and Secure Computing, 2014, 11(4):307-317. [5] GALAL H S, MAHDY Y B, ATIEA M A. Behavior-based features model for malware detection[J]. Journal of Computer Virology and Hacking Techniques, 2016, 12(2):59-67. [6] UCCI D, ANIELLO L, BALDONI R. Survey of machine learning techniques for malware analysis[J]. Computers & Security, 2019, 81(3):123-147. [7] KIRAT D, VIGNA G, KRUEGEL C. Barecloud: Bare-metal analysis-based evasive malware detection[C] //23rd USENIX Security Symposium. [S.l.] : IEEE, 2014: 287-301. [8] ANONYM.VirusShare sandbox[EB/OL]. [2020-03-05]. https://virusshare.com/, 2020. [9] ANONYM. Malware analysis sandbox[EB/OL]. [2020-08-06]. https://app.any.run/, 2020. [10] ANONYM. Automated malware analysis Joe sandbox[EB/OL] [2020-11-05]. https://www.joesandbox.com, 2020. [11] AFIANIAN A, NIKSEFAT S, SADEGHIYAN B, et al. Malware dynamic analysis evasion techniques: a survey[J]. ACM Computing Surveys(CSUR), 2019, 52(6):1-28. [12] DAMODARAN A, TROIA F D, VISAGGIO C A, et al. A comparison of static, dynamic, and hybrid analysis for malware detection[J]. Journal of Computer Virology & Hacking Techniques, 2015, 13(1):1-12. [13] EGELE M, SCHOLTE T, KIRDA E, et al. A survey on automated dynamic malware-analysis techniques and tools[J]. ACM computing surveys(CSUR), 2008, 44(2):1-42. [14] ATTALURI S, MCGHEE S, STAMP M. Profile hidden Markov models and metamorphic virus detection[J]. Journal in Computer Virology, 2009, 5(2):151-169. [15] DESHPANDE S, PARK Y, STAMP M. Eigenvalue analysis for metamorphic detection[J]. Journal of Computer Virology & Hacking Techniques, 2014, 10(1):53-65. [16] SINGH T, DI TROIA F, CORRADO V A, et al. Support vector machines and malware detection[J]. Journal of Computer Virology and Hacking Techniques, 2016, 12(4):203-212. [17] AHMED F, HAMEED H, SHAFIQ M Z, et al. Using spatio-temporal information in API calls with machine learning algorithms for malware detection[C] //Proceedings of the 2nd ACM Workshop on Security and Artificial Intelligence. [S.l.] : ACM, 2009: 55-62. [18] ESKANDARI M, HASHEMI S. A graph mining approach for detecting unknown malwares[J]. Journal of Visual Languages & Computing, 2012, 23(3):154-162. [19] QIAO Y, HE J, YANG J, et al. Analyzing malware by abstracting the frequent itemsets in API call sequences[C] //2013 12th IEEE International Conference on Trust, Security and Privacy in Computing and Communications. [S.l.] : IEEE, 2013: 265-270. [20] AIZAWA A. An information-theoretic perspective of TF-IDF measures[J]. Information Processing & Management, 2003, 39(1):45-65. [21] ADLER J, PARMRYD I. Quantifying colocalization by correlation: the Pearson correlation coefficient is superior to the Manders overlap coefficient[J]. Cytometry Part A, 2010, 77a(8):733-742. |
[1] | 李颖,张国林. 互信息和核熵成分分析的油中溶解气体浓度建模[J]. 《山东大学学报(理学版)》, 2022, 57(7): 43-52. |
[2] | 周安民,户磊,刘露平,贾鹏,刘亮. 基于熵时间序列的恶意Office文档检测技术[J]. 《山东大学学报(理学版)》, 2019, 54(5): 1-7. |
[3] | 刘铭, 昝红英, 原慧斌. 基于SVM与RNN的文本情感关键句判定与抽取[J]. 山东大学学报(理学版), 2014, 49(11): 68-73. |
[4] | 潘清清,周枫,余正涛,郭剑毅,线岩团. 基于条件随机场的越南语命名实体识别方法[J]. 山东大学学报(理学版), 2014, 49(1): 76-79. |
[5] | 杜瑞颖, 杨勇, 陈晶, 王持恒. 一种基于相似度的高效网络流量识别方案[J]. 山东大学学报(理学版), 2014, 49(09): 109-114. |
[6] | 董源1,徐雅斌1,2*,李卓1,2,李艳平1. 基于社会计算和机器学习的垃圾邮件识别方法的研究[J]. J4, 2013, 48(7): 72-78. |
[7] | 黄林晟1,邓志鸿1,2,唐世渭1,2,王文清3,陈凌3. 基于编辑距离的中文组织机构名简称-全称匹配算法[J]. J4, 2012, 47(5): 43-48. |
[8] | 唐都钰1,王大亮2,赵凯2,秦兵1,刘挺1. 面向汽车领域的软文识别研究[J]. J4, 2012, 47(3): 43-46. |
[9] | 黄贤立,罗冬梅. 倾向性文本迁移学习中的特征重要性研究[J]. J4, 2010, 45(7): 13-17. |
|