《山东大学学报(理学版)》 ›› 2023, Vol. 58 ›› Issue (12): 10-21.doi: 10.6040/j.issn.1671-9352.2.2022.484
摘要:
提出了一种新的基于文本语义扩展的记忆网络模型, 用于生成环境感知的查询建议。采用基于注意力机制的分层编码器-解码器模型, 利用外部记忆网络, 生成查询与查询相关文档之间的神经注意力向量。模型融合了查询层、会话层和文档层语义信息, 与目前的研究方法相比, 能生成具有更高相关性的环境感知查询建议。使用真实的商业搜索引擎查询日志进行了实验, 实验结果表明了该模型的有效性。
中图分类号:
1 | ARAMPATZIS Avi, KAMPS Jaap. A study of query length[C]//Proceedings of the 31th Annual International ACM SIGIR Conference (SIGIR). Singapore: ACM, 2008: 811-812. |
2 | SORDONI Alessandro, BENGIO Yoshua, VAHABI Hossein, et al. A hierarchical recurrent encoder-decoder for generative context-aware query suggestion[C]//Proceedings of the 24th ACM International on Conference on Information and Knowledge Management (CIKM). Melbourne: ACM, 2015: 553-562. |
3 | MEI Qiaozhu, ZHOU Dengyong, CHURCH Kenneth. Query suggestion using hitting time[C]//Proceedings of the 17th ACM Conference on Information and Knowledge Management (CIKM). California: ACM, 2008: 469-478. |
4 | CAO Huanhuan, JIANG Daxin, PEI Jian, et al. Context-aware query suggestion by mining click-through and session data[C]//Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining(KDD). Las Vegas: ACM, 2008: 875-883. |
5 | HU Hao, ZHANG Mingxi, HE Zhenying, et al. Diversifying query suggestions by using topics from wikipedia[C]//ACM International Conferences on Web Intelligence(WI). Atlanta: ACM, 2013: 139-146. |
6 | JAIN Alpa, OZERTEM Umut, VELIPASAOGLU Emre. Synthesizing high utility suggestions for rare web search queries[C]//Proceeding of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval(SIGIR). Beijing: ACM, 2011: 805-814. |
7 | SHOKOUHI Milad. Learning to personalize query auto-completion[C]//Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval(SIGIR). Dublin: ACM, 2013: 103-112. |
8 | JIANG J Y, KE Y Y, CHIEN P Y, et al. Learning user reformulation behavior for query auto-completion[C]//Proceedings of the 37th International ACM SIGIR Conference on Research and Development in Information Retrieval(SIGIR). Gold Coast: ACM, 2014: 445-454. |
9 | HE Qi, JIANG Daxin, LIAO Zhen, et al. Web query recommendation via sequential query prediction[C]//Proceedings of the 25th International Conference on Data Engineering(ICDE). Shanghai: IEEE, 2009: 1443-1454. |
10 | BAHDANAU Dzmitry, CHO Kyunghyun, BENGIO Yoshua. Neural machine translation by jointly learning to align and translate[C]//The 3rd International Conference on Learning Representations(ICLR). San Diego: ICLR, 2015. |
11 | VASWANI Ashish, SHAZEER Noam, PARMAR Niki, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems 30(NIPS). Long Beach: MIT, 2017: 5998-6008. |
12 | AHMAD Uddin Wasi, CHANG Kaiwei, WANG Hongning. Context attentive document ranking and query suggestion[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval(SIGIR). Paris: ACM, 2019: 385-394 |
13 | HAN F X, NIU D, LAI K F, et al. Inferring search queries from web documents via a graph-augmented sequence to attention network[C]//Proceedings of the 2019 World Wide Web Conference on World Wide Web (WWW). San Francisco: ACM, 2019: 2792-2798. |
14 | ZHONG Jianling, GUO Weiwei, GAO Huiji, et al. Personalized query suggestions[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR). Paris: ACM, 2020: 1645-1648. |
15 | MUSTAR Agnès, LAMPRIER Sylvain, PIWOWARSKI Benjamin. On the study of transformers for query suggestion[J]. ACM Transactions on Information Systems, 2022, 40(1): 18: 1-18: 27. |
16 | YU Shi, LIU Jiahua, YANG Jingqin, et al. Few-shot generative conversational query rewriting[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval(SIGIR). [S.l.]: ACM, 2020: 1933-1936. |
17 | NOGUEIRA Rodrigo, YANG Wei, LIN Jimmy, et al. Document expansion by query prediction[J/OL]. arXiv. 2019. http://arxiv.org/abs/1904.08375. |
18 | DAI Zhuyun, CALLAN Jamie. Deeper text understanding for IR with contextual neural language modeling[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval(SIGIR). Paris: ACM, 2019: 985-988. |
19 | YANG Wei, ZHANG Haotian, LIN Jimmy. Simple applications of BERT for ad hoc document retrieval[J/OL]. arXiv. 2019. https://arxiv.org/abs/1903.10972. |
20 | WESTON Jason, CHOPRA Sumit, BORDES Antoine. Memory networks[C]//The 3rd International Conference on Learning Representations (ICLR). San Diego: ICLR, 2015. |
21 | CHEN Peng, SUN Zhongqian, BING Lidong, et al. Recurrent attention network on memory for aspect sentiment analysis[C]//Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing(EMNLP). Copenhagen Copenhagen: [s. n. ], 2017: 452-461. |
22 | TANG Duyu, QIN Bing, LIU Ting. Aspect level sentiment classification with deep memory network[C]//Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing (EMNLP). Austin: MIT, 2016: 214-224. |
23 | PAPINENI Kishore, ROUKOS Salim, WARD Todd, et al. Bleu: a method for automatic evaluation of machine translation[C]//Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics (ACL 2002). Philadelphia: MIT, 2002: 311-318. |
24 | HAGEN Matthias, POTTHAST Martin, BEYER Anna, et al. Towards optimum query segmentation: in doubt without[C]//Proceedings of the 21st ACM International on Conference on Information and Knowledge Management (CIKM). Maui: ACM, 2012: 1015-1024. |
[1] | 吴洁,朱小飞,张宜浩,龙建武,黄贤英,杨武. 基于用户情感倾向感知的微博情感分析方法[J]. 《山东大学学报(理学版)》, 2019, 54(3): 46-55. |
[2] | 陈桂英. 带有阈值的广义模糊双向联想记忆#br# 网络的稳定性分析[J]. 山东大学学报(理学版), 2014, 49(1): 80-85. |
|