您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2015, Vol. 50 ›› Issue (07): 71-75.doi: 10.6040/j.issn.1671-9352.3.2014.108

• 论文 • 上一篇    下一篇

基于广义Jaccard系数的微博情感新词判定

桑乐园, 徐新峰, 张婧, 黄德根   

  1. 大连理工大学电信学部计算机学院, 辽宁 大连 116024
  • 收稿日期:2015-03-03 出版日期:2015-07-20 发布日期:2015-07-31
  • 通讯作者: 黄德根(1965-),男,博士,教授,研究方向为自然语言处理.E-mail:huangdg@dlut.edu.cn E-mail:huangdg@dlut.edu.cn
  • 作者简介:桑乐园(1991-),女,硕士研究生,研究方向为自然语言处理.E-mail:Sangleyuan@mail.dlut.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(61173100, 61173101, 61272375);教育部人文社会科学研究规划基金资助项目(13YJAZH062)

New microblog sentiment lexicon judgment based on generalized Jaccard coefficient

SANG Le-yuan, XU Xin-feng, ZHANG Jing, HUANG De-gen   

  1. School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, Liaoning, China
  • Received:2015-03-03 Online:2015-07-20 Published:2015-07-31

摘要: 微博情感新词的极性判定是情感分析研究中的一项基本任务,旨在对新词进行情感分类。针对极性判定的问题,提出一种新的计算特征向量相似度的算法。该方法首先使用特征向量表示情感新词和已有情感词,利用点互信息计算特征权值:然后采用广义Jaccard系数分别计算情感新词与已有的三种极性的情感词集内情感词的相似度,词集内相似度之和即为情感新词与该情感词集的相关度:最后,通过情感新词与三个极性情感词集的相关度的距离差判定其极性。实验结果表明,基于广义Jaccard系数的情感新词极性判定算法得出的F值比COAE 2014参赛队伍的最好成绩高两个百分点。

关键词: 特征向量, 距离差, 无监督, 点互信息

Abstract: New microblog sentiment lexicon polarity judgment is a basic task aiming at classifying its emotion categories in sentiment analysis. This paper proposed a new approach that can judge the polarity of new microblog sentiment lexicon. The feature vectors are employed to represent new sentiment lexicon and the existing sentiment lexicon while the weight values are calculated by PMI. The similarity between the new sentiment lexicon and the candidates which is from three sentiment lexicon sets of different polarities through the generalized Jaccard coefficient, and the relativity between the new sentiment lexicon and the existing sentiment lexicon sets is defined as the sum of the above similarities. Finally, relativity distance differences of the three sentiment lexicon sets are applied to judge the polarity. The result of experiment showed that the F-score calculated through polarity judgment algorithm base on the generalized Jaccard coefficient was two points higher than the best team in COAE 2014.

Key words: feature vector, PMI, distance difference, unsupervised

中图分类号: 

  • TP391
[1] 杨亮,林原,林鸿飞. 基于情感分布的微博热点事件发现[J]. 中文信息学报,2012,26(1):84-90. YANG Liang, LIN Yuan, LIN Hongfei. Micro-blog hot events detection based on emotion distribution[J]. Journal of Chinese Information Processing, 2012, 26(1):84-90.
[2] GODBOLE N, SRINIVASAIAH M, SKIENA S. Large-scale sentiment analysis for news and blogs[J]. ICWSM, 2007, 7(21):219-222.
[3] QIU Guang, LIU Bing, BU Jiajun, et al. Expanding domain sentiment lexicon through double propagation[C]//IJCAI-International Joint Conference on Artificial Intelligence. San Francisco:Morgan Kaufmann Publishers Inc, 2009:1199-1204.
[4] WANG S, MANNING C D. Baselines and bigrams: simple, good sentiment and topic classification[C]//Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2012:90-94.
[5] TURNEY P D. Thumbs up or thumbs down: semantic orientation applied to unsupervised classification of reviews[C]//Proceedings of the 40th Annual Meeting on Association for Computational Linguistics. Stroudsburg: ACL, 2002:417-424.
[6] LI Fangtao, PAN S J, JIN Ou, et al. Cross-domain co-extraction of sentiment and topic lexicons[C]//Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2012:410-419.
[7] 金宇,朱洪波,王亚强,等. 基于直推式学习的中文情感词极性判别[J]. 计算机工程与应用,2011,47(34):164-167. JIN Yu, ZHU Hongbo, WANG Yaqiang, et al. Determining of polarity of Chinese opinion words based on transductive learning[J]. Computer Engineering and Applications, 2011, 47(34):164-167.
[8] 杨立公,樊孝忠,朱俭. 利用语义词典的情感词快速识别[J]. 计算机工程与设计,2013,34(8):2978-2982. YANG Ligong, FAN Xiaozhong, ZHU Jian. Quick sentiment word discrimination by using semantics lexicon[J]. Computer Engineering and Design, 2013, 34(8):2978-2982.
[9] BOLLEGALA D, WEIR D, CARROLL J. Cross-domain sentiment classification using a sentiment sensitive thesaurus[J]. Knowledge and Data Engineering, 2013, 25(8):1719-1731.
[10] 石静,吴云芳,邱立坤,等. 基于大规模语料库的汉语词义相似度计算方法[J]. 中文信息学报,2013, 27(1):1-6. SHI Jing, WU Yunfang, QIU Likun, et al. Chinese lexical sematic similarity computing based on large-scale corpus[J]. Journal of Chinese Information Processing, 2013, 27(1):1-6.
[11] 张宇,刘雨东,计钊. 向量相似度测度方法[J]. 声学技术, 2009, 28(4): 532-536. ZHANG Yu, LIU Yudong, JI Zhao. Vector similarity measurement method[J]. Technical Acoustics, 2009, 28(4):532-536.
[12] HUANG Degen, TONG Deqin. Context information and fragments based cross-domain word segmentation[J]. China Communications, 2012, 9(3):49-57.
[13] 徐琳宏,林鸿飞,潘宇,等. 情感词汇本体的构造[J]. 情报学报,2008,27(2): 180-185. XU Linhong, LIN Hongfei, PAN Yu, et al. Constructing the affective lexicon ontology[J]. Journal of the China Society for Scientific and Technical Information, 2008, 27(2):180-185.
[1] 钱小燕. 解大型对称矩阵特征值问题的一个子空间加速截断牛顿法[J]. J4, 2011, 46(8): 8-12.
[2] 冯新磊,赵建立, . 极大加广义正定矩阵[J]. J4, 2007, 42(8): 70-73 .
[3] 胡 钢,冯向前,魏翠萍,李宗植 . 区间数判断矩阵满意一致性递推排序方法研究[J]. J4, 2007, 42(11): 89-93 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!