山东大学学报(理学版) ›› 2014, Vol. 49 ›› Issue (11): 37-42.doi: 10.6040/j.issn.1671-9352.3.2014.136
朱玺, 董喜双, 关毅, 刘志广
ZHU Xi, DONG Xi-shuang, GUAN Yi, LIU Zhi-guang
摘要: 微博情感倾向性分析通常指对中文微博中每个句子褒义、贬义或者中性的情感进行自动分类.针对微博碎片化和情感类别失衡的特点,在半监督学习reserved self-training方法的框架基础上提取了适用于微博情感分类的文本特征,并提出了针对情感倾向性分析通过训练度阈值设定的方法来优化reserved self-training迭代终止的条件,在保留reserved self-training能有效处理微博语料中语料情感不平衡问题的优点基础上,防止了训练过度情况的发生.COAE 2014微博情感倾向性评测结果证明了该方法的有效性.
中图分类号:
[1] 王远怀, 于洪彦, 李响. 网络评论如何影响网络购物意愿?[J]. 中大管理研究, 2013, 8(2):1-19. WANG Huaiyuan, YU Hongyan, LI Xiang. How network comment to influence the online shopping intention?[J]. China Management Studies, 2013, 8(2):1-19. [2] PANG Bo, LEE L, VAITHYANATHAN S. Thumbs up? sentiment classification using machine learning techniques[C]// Proceedings of the 2002 Conference on Empirical Methods In Natural Language Processing. Somerset: ACL, 2002: 79-86. [3] LIU Z, DONG X, GUAN Y, et al. Reserved self-training: a semi-supervised sentiment classification method for Chinese Micro-blogs[C]// Proceedings of IJCNLP. Somerset: ACL, 2013: 455-462. [4] BAKLIWAL A, FOSTER J, VAN DER PUIL J, et al. Sentiment analysis of political tweets: towards an accurate classifier[C]// Proceedings of NAACL Workshop on Language Analysis in Social Media. Atlanta, GA, 2013: 49-58. [5] BARBOSA L, FENG J. Robust sentiment detection on Twitter from biased and noisy data[C]// Proceedings of the 23rd International Conference on Computational Linguistics. Philadelphia, PA, USA: Association for Computational Linguistics, 2010: 36-44. [6] RUSTAMOY S, CLEMENTS M A. Sentence-level subjectivity detection using neuro-fuzzy models[C]// Proceedings of the 4th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis.Atlanta: Association for Computational Linguistics, 2013: 108-114. [7] BOLLEN J, PEPE A, MAO Huina. Modeling public mood and emotion: Twitter sentiment and socio-economic phenomena[C]// Proceedings of ICWSM.[S.l.]: AAAI Press, 2011: 450-453. [8] MEENA A, PRABHAKAR T. Sentence level sentiment analysis in the presence of conjuncts using linguistic analysis[M]. Berlin Heidelberg: Springer, 2007: 573-580. [9] SOCHER R, PENNINGTON J, HUANG E, et al. Semi-supervised recursive autoencoders for predicting sentiment distributions[C]// Proceedings of the Conference on Empirical Methods in Natural Language Processing. Philadelphia, PA, USA: Association for Computational Linguistics, 2011: 151-161. [10] TAN C, LEE L, TANG J, et al. User-level sentiment analysis incorporating social networks[C]// Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data mining. New York: ACM, 2011: 1397-1405. [11] LI Shoushan, WANG Zhongqing, ZHOU Guodong, et al. Semi-supervised learning for imbalanced sentiment classification[C]// Proceedings of International Joint Conference on Artificial Intelligence(IJCAI).[S.l.]: AAAI Press, 2011, 22(3):1826-1831. [12] DONG X, GUAN Y, LI B, et al. Sentiment analysis on Chinese words and sentences based on maximum entropy model[C]// Proceedings of COAE.Shanghai:[s.n.], 2009: 50-58. [13] BLUMER A, EHRENFEUCHT A, HAUSSLER D, et al. Occam's razor[J]. Information Processing Letters, 1987, 24(6):377-380. |
[1] | 余传明,冯博琳,田鑫,安璐. 基于深度表示学习的多语言文本情感分析[J]. 山东大学学报(理学版), 2018, 53(3): 13-23. |
[2] | 陈鑫,薛云,卢昕,李万理,赵洪雅,胡晓晖. 基于保序子矩阵和频繁序列模式挖掘的文本情感特征提取方法[J]. 山东大学学报(理学版), 2018, 53(3): 36-45. |
[3] | 何炎祥, 刘健博, 孙松涛, 文卫东. 基于层叠条件随机场的微博商品评论情感分类[J]. 山东大学学报(理学版), 2015, 50(11): 67-73. |
[4] | 朱珠, 李寿山, 戴敏, 周国栋. 结合主动学习和自动标注的评价对象抽取方法[J]. 山东大学学报(理学版), 2015, 50(07): 38-44. |
[5] | 周文, 张书卿, 欧阳纯萍, 刘志明, 阳小华. 基于情感依存元组的新闻文本主题情感分析[J]. 山东大学学报(理学版), 2014, 49(12): 1-6. |
[6] | 杨佳能, 阳爱民, 周咏梅. 基于语义分析的中文微博情感分类方法[J]. 山东大学学报(理学版), 2014, 49(11): 14-21. |
[7] | 孙松涛, 何炎祥, 蔡瑞, 李飞, 贺飞艳. 面向微博情感评测任务的多方法对比研究[J]. 山东大学学报(理学版), 2014, 49(11): 43-50. |
[8] | 夏梦南, 杜永萍, 左本欣. 基于依存分析与特征组合的微博情感分析[J]. 山东大学学报(理学版), 2014, 49(11): 22-30. |
[9] | 张成功1,2,刘培玉1,2*,朱振方1,2,方明1,2. 一种基于极性词典的情感分析方法[J]. J4, 2012, 47(3): 47-50. |
|