您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2015, Vol. 50 ›› Issue (03): 28-31.doi: 10.6040/j.issn.1671-9352.3.2014.186

• 论文 • 上一篇    下一篇

基于网络评论的消费者重购行为意向挖掘

崔雪莲, 洪月, 那日萨   

  1. 大连理工大学系统工程研究所, 辽宁 大连 116024
  • 收稿日期:2014-08-28 修回日期:2015-01-16 出版日期:2015-03-20 发布日期:2015-03-13
  • 通讯作者: 那日萨(1970- ),教授,博士生导师,研究方向为情感计算、文本挖掘.E-mail:nmgnrs@dlut.edu.cn E-mail:nmgnrs@dlut.edu.cn
  • 作者简介:崔雪莲(1989- ),女,博士研究生,研究方向为情感计算、电子商务.E-mail:cxuelian@mail.dlut.edu.cn
  • 基金资助:
    国家自然科学基金面上项目(61471083);教育部人文社科研究规划基金项目(14YJA630044)

Consumer repurchases intention mining analysis based on online review

CUI Xue-lian, HONG Yue, ZHAO Narisa   

  1. Institute of Systems Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China
  • Received:2014-08-28 Revised:2015-01-16 Online:2015-03-20 Published:2015-03-13

摘要: 从消费者情感和网站促销因素两个角度出发,依据网络消费者再购行为模型和计划行为理论,构建了消费者重复购买意向模型;通过对消费者在线评论的情感词的提取和语义分析,计算消费者满意度和信任感,进而由模糊推理得出消费者重购意向值。最后,根据消费者的重购意向值和商品收藏数量对商品进行分类,并为商家提出有效的营销建议。

关键词: 情感计算, 模糊推理, 网络评论, 消费者行为

Abstract: According to the online consumer repurchase behavior model and the theory of planned behavior, the consumer repurchase behavior intention model was built from both the consumer emotions and website external promotion factor. And through the online review extraction and semantic analysis of the emotional words the consumer satisfaction and trust were computed. Then the repurchases intention of consumers was also gotten based on the fuzzy inference theory. Finally, according to the repurchase intention of consumers for different products and the number of online product collections, the products were classified and effective marketing advices for businesses was given.

Key words: online review, fuzzy inference, consumer behavior, affective computing

中图分类号: 

  • TP391
[1] KHALIFA M, LIU V. Online consumer retention: contingent effects of online shopping habit and online shopping experience[J]. European Journal of Information Systems, 2007, 16(6):780-792.
[2] HELLIER P K, GEURSEN G M, RODNEY A,et al. RICKARD. Customer repurchase intention: a general structural equation model [J]. European Journal of Marketing, 2003, 37(11/12):1762-1800.
[3] PARASURAMAN A, ZEITHAML V A, BERRY L L. A conceptual model of service quality and its implications for future research[J]. Journal of Marketing,1985, 49(4).
[4] JOHNSON M, GUSTAFSSON A, ANDREASSEN T W, et al. The evolution and future of national customer satisfaction index models[J]. Journal of Economic Psychology, 2001, 22(2):217-245.
[5] BART Y, SHANKAR V, SULTAN F, et al. Are the drivers and role of online trust the same for all web sites and consumers? A large-scale exploratory empirical study[J]. Journal of marketing, 2005, 69(4):133-152.
[6] ROSE S, CLARKM, SAMOUEL P, et al. Online customer experience in e-retailing: an empirical model of antecedents and outcomes[J]. Journal of Retailing, 2012, 88(2):308-322.
[7] 黄劲松, 赵平, 王高, 等. 中国顾客重复购买意向的多水平研究[J]. 管理科学学报, 2004, 7(6):80-86. HUANG Jinsong, ZHAO Ping, WANG Gao, et al. Sudy on customers' repurchase intention in China[J]. Journal of Management Sciences in China, 2004, 7(6):80-86.
[8] AJZEN I. The theory of planned behavior[J]. Behavior and Human Decision Processes, 1991, 50:179-211.
[9] ZHAO Narisa, LI Yuan, YANG Deli. Fuzzy sentiment inference (FSI) of online reviews for consumer recommendation[J].ICIC Express Letters, 2011, 5(1):65-70.
[10] 董强, 董振东, 孙茂松.语言计算与基于内容的文本处理[M]. 北京:清华大学出版社,2003:364-370. DONG Qiang, DONG Zhendong, SUN Maosong. Language computing and content-based text processing[M].Beijing: Tsinghua University Press, 2003:364-370.
[1] 戚方丽, 崔雪莲, 那日萨. 基于在线评论的品牌再购意向模糊推理方法[J]. 山东大学学报(理学版), 2015, 50(07): 17-22.
[2] 宋爽, 那日萨, 张杨. 基于在线评论的消费者品牌转换意向模糊推理[J]. 山东大学学报(理学版), 2014, 49(12): 7-11.
[3] 唐益明, 李小梅, 吴玺. 面向R-蕴涵算子的FMT-泛三Ⅰ*算法[J]. 山东大学学报(理学版), 2014, 49(08): 22-27.
[4] 宋 颖,张兴芳,王庆平 . 参数Kleene系统的α-反向三Ⅰ支持算法[J]. J4, 2007, 42(7): 45-48 .
[5] 刘华文,,王国俊,张诚一 . 全蕴涵多Ⅰ算法及其在多准则决策中的应用[J]. J4, 2007, 42(6): 74-80 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!