《山东大学学报(理学版)》 ›› 2020, Vol. 55 ›› Issue (3): 98-106.doi: 10.6040/j.issn.1671-9352.4.2019.142
• • 上一篇
常凡凡,马建敏*
CHANG Fan-fan, MA Jian-min*
摘要: 基于矩阵的直观性和矩阵运算的简便性引入区间向量,给出了区间集一种新的表达形式,探讨了区间向量的相关性质,给出了区间向量与关系矩阵的运算法则。在经典粗糙集中,给出了基于关系矩阵的粗糙下、上近似的等价表示,进而利用关系矩阵和区间向量提出了基于关系矩阵的区间集粗糙下、上近似,构造了基于关系矩阵计算区间集粗糙下、上近似的方法,给出了其相应的算法,并通过实例说明了该方法的简便性与有效性。
中图分类号:
[1] PAWLAK Z. Rough sets[J]. International Journal of Computer and Information Science, 1982, 11(5):341-356. [2] PAWLAK Z. Rough sets-theoretical aspects of reasoning about data[M]. London: Kluwer Academic Publishers, 1991. [3] SWINIARSKI R W, SKOWRON A. Rough set methods in feature selection and recognition[J]. Pattern Recognition Letters. 2003, 24(6):833-849. [4] 张文修, 梁怡, 吴伟志. 信息系统与知识发现[M]. 北京:科学出版社, 2003: 81-86. ZHANG Wenxiu, LIANG Yi, WU Weizhi. Information systems and knowledge discovery[M]. Beijing: Science Press, 2003: 81-86. [5] QIAN Y H, CHENG H H, WANG J T, et al. Grouping granular structures in human granulation intelligence[J]. Information Science, 2017, 382/383:150-169. [6] 郑荔平, 胡敏杰, 杨红和, 等. 基于粗糙集的协同过滤算法研究[J]. 山东大学学报(理学版), 2019, 54(2):41-50. ZHENG Liping, HU Minjie, YANG Honghe, et al. Research on collaborative filtering algorithm based on rough set[J]. Journal of Shandong University(Natural Science), 2019, 54(2):41-50. [7] GRECO S, MATARAZZO B, SLOWINSKI R. Rough approximation by dominance relations[J]. International Journal of Intelligent System, 2002, 17(2):153-171. [8] MA Jianmin, ZOU Cunjun, PAN Xiaochen. Structured probabilistic rough set approximations[J]. International Journal of Approximate Reasoning, 2017, 90:319-332. [9] 翟俊海, 张垚, 王熙照. 相容粗糙模糊集模型[J]. 山东大学学报理学版(理学版), 2014, 49(8):73-79. ZHAI Junhai, ZHANG Yao, WANG Xizhao. Tolerance rough fuzzy set model[J]. Journal of Shandong University(Natural Science), 2014, 49(8):73-79. [10] ZIARKO W. Variable precision rough set model[J]. Journal of Computer and Systems Science, 1993, 46(1):39-59. [11] PAWLAK Z, WONG S K M, ZIARKO W. Rough sets: probabilistic versus deterministic approach[J]. International Journal of Man-Machine Studies, 1988, 29(1):81-95. [12] YAO Y Y. Probabilistic rough set approximation[J]. International Journal of Approximate Reasoning, 2008, 49(2):255-271. [13] YAO Y Y, WONG S K M. A decision theoretic framework for approximating concepts[J]. International Journal of Man-Machine Studies, 1992, 37(6):793-809. [14] SLEZAK D, ZIARKO W. The investigation of the Beyesian rough set model[J]. International Journal of Approximate Reasoning, 2005, 40:81-91. [15] GRAYMALA-BUSSE J W, YAO Y Y. Probabilistic rule induction with the LERS data mining system[J]. International Journal of Intelligent Systems, 2011, 26(6):518-539. [16] TSUMOTO S, TANAKA H. Primerose: probabilistic rule induction method based on rough sets and resampling methods[J]. Computational Intelligence, 1995, 11(2):389-405. [17] DUBOIS D, PRADE H. Rough fuzzy sets and fuzzy rough set[J]. International Journal of General Systems, 1990, 17(1):191-208. [18] WANG Chunyong. Topological characterizations of generalized fuzzy rough sets[J]. Fuzzy Sets and Systems, 2016, 312:109-125. [19] 胡宝清. 基于区间集的三支决策粗糙集[M] // 刘盾, 李天瑞, 苗夺谦, 等. 三支决策与粒计算. 北京: 科学出版社, 2013: 182-183. HU Baoqing. Three decisions rough sets based on interval sets[M] // LIU Dun, LI Tianrui, MIAO Duoqian, et al. Three Decisions and Granular Computing. Beijing: Science Press, 2013: 182-183. [20] GUAN J W, BELL D A, GUAN Z. Matrix computation for information systems[J]. Information Sciences, 2001, 131:129-156. [21] LIU Guilong. The axiomatization of the rough set upper approximation operations[J]. Fundamenta Informaticae, 2006, 69(3):331-342. [22] 王磊, 李天瑞. 基于矩阵的粗糙集上下近似的计算方法[J]. 模式识别与人工智能, 2011, 24(6):1-7. WANG Lei, LI Tianrui. Calculation method of upper and lower approximation of rough set based on matrix[J]. Pattern Recognition & Artificial Intelligence, 2011, 24(6):1-7. [23] 刘财辉, 苗夺谦. 基于矩阵的粗糙集上、下近似求解算法[J]. 计算机应用研究, 2011, 28(5):1628-1630. LIU Caihui, MIAO Duoqian. Algorithm for upper and lower approximation of rough sets based on matrix[J]. Journal of Computer Applications, 2011, 28(5):1628-1630. [24] ZHANG Junbo, ZHU Yun, PAN Yi, et al. Efficient parallel Boolean matrix based algorithms for computing composite rough set approximations[J]. Information Sciences, 2016, 329:287-302. [25] 林姿琼, 王敬前, 祝峰. 矩阵方法计算覆盖粗糙集中最小、最大描述[J]. 山东大学学报(理学版), 2014, 49(8):97-101. LIN Ziqiong, WANG Jingqian, ZHU Feng. Computing minimal description and maximal description in covering-based rough sets through matrices[J]. Journal of Shandong University(Natural Science), 2018, 49(8):97-101. [26] WANG Jingqian, ZHANG Xiaohong. Matrix approaches for some issues about minimal and maximal descriptions in covering-based rough sets[J]. International Journal of Approximate Reasoning, 2019, 104:126-143. [27] HUANG Yanyong, LI Tianrui, LUO Chuan. Matrix-based dynamic updating rough fuzzy approximations for data mining[J]. Knowledge-Based Systems, 2017, 119:273-283. [28] YAO Y Y. Interval-set algebra for qualitative knowledge representation[C] // Proceedings of the 5th International Conference on Computing and Information.Ontario:IEEE, 1993: 370-374. [29] 马建敏, 景嫄, 姚红娟. 区间集概率粗糙集的单调性[J]. 模糊系统与数学, 2018, 32(4):180-190. MA Jianmin, JING Yuan, YAO Hongjuan. The monotonicity of interval-sets probabilistic rough sets[J]. Fuzzy Systems and Mathematics, 2018, 32(4):180-190. |
[1] | 刘营营,米据生,梁美社,李磊军. 三支区间集概念格[J]. 《山东大学学报(理学版)》, 2020, 55(3): 70-80. |
[2] | 张恩胜. 区间集概念格属性约简的组成与结构[J]. 山东大学学报(理学版), 2018, 53(8): 17-24. |
[3] | 高盛祥,余正涛,秦雨,程韵如,庙介璞. 基于随机游走策略的专家关系网络构建[J]. 山东大学学报(理学版), 2016, 51(7): 30-34. |
[4] | 乔希民,吴洪博. 区间集上非交换剩余格的〈,(-overQ)〉-fuzzy滤子及其特征刻画[J]. 山东大学学报(理学版), 2016, 51(2): 102-107. |
|