《山东大学学报(理学版)》 ›› 2020, Vol. 55 ›› Issue (4): 108-117.doi: 10.6040/j.issn.1671-9352.4.2019.155
• • 上一篇
邵亚斌,王宁
SHAO Ya-bin, WANG Ning
摘要: 基于智能决策的需要,将梯形模糊数运用到Pythagorean模糊集中,提出了梯形模糊数Pythagorean模糊集的定义,给出了梯形模糊数Pythagorean模糊熵的4种构造函数和它们的代数性质,并证明了构造的合理性,最后运用梯形模糊数Pythagorean模糊熵给出了一种决策规则与决策模型。
中图分类号:
[1] ZADEH L A. Fuzzy sets[J].Information and Control, 1965, 8(3):338-353. [2] ATANASSOV K T. Intuitionistic fuzzy sets[J]. Fuzzy Sets and Systems, 1986, 20(1):87-96. [3] ATANASSOV K T, GARGOV G. Interval-valued intuitionistic fuzzy sets[J]. Fuzzy Sets and Systems,1989, 31(3):343-349. [4] YAGER R R. Pythagorean fuzzy subsets[C] // Proceeding of Joint IFSA World Congress and NAFIPS Annual Meeting. Edmonton: IEEE, 2013: 57-61. [5] 刘锋, 袁学海. 模糊数直觉模糊集[J]. 模糊系统与数学, 2007, 21(1):88-91. LIU F, YUAN X H. Fuzzy number intuitionistic fuzzy set[J]. Fuzzy Systems and Mathematics, 2007, 21(1):88-91. [6] 王中兴, 唐芝兰, 牛利利. 基于相对优势度的区间直觉模糊多属性决策方法[J].山东大学学报(理学版), 2012, 47(9):92-97. WANG Z X, TANG Z L, NIU L L. Multi-criteria fuzzy decision-making method with interval-valued intuitionistic fuzzy sets based on relative superiority[J]. Journal of Shandong University(Natural Science), 2011, 47(9):92-97. [7] KAHRAMAN C, CEBI S, ONAR S C, et al. A novel trapezoidal intuitionistic fuzzy information axiom approach: an application to multicriteria landfill site selection[J]. Engineering Applications of Artificial Intelligence,2018, 67: 157-172. [8] GARG H. A Linear programming method based on an improved score function for interval-valued Pythagorean fuzzy numbers and its application to decision-making[J]. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 2018, 26(1):67-80. [9] ZADEH L A. Probability measures of fuzzy events[J]. Journal of Mathematical Analysis & Applications, 1968, 23(2):421-427. [10] LUCA A, TERMINI S. A definition of a nonprobabilistic entropy in the setting of fuzzy sets theory[J]. Information and Control, 1972, 20(4):301-312. [11] BURILLO P, BUSTINCE H. Entropy on intuitionistic fuzzy sets and on interval-valued fuzzy sets[J]. Fuzzy Sets and Systems, 1996, 78(3):305-316. [12] SZMIDT E, KACPRZYK J. Entropy for intuitionistic fuzzy sets[J]. Fuzzy Sets and Systems, 2001, 118(3):467-477. [13] MENG F, CHEN X. Entropy and similarity measure of Atanassovs intuitionistic fuzzy sets and their application to pattern recognition based on fuzzy measures[J]. Pattern Analysis and Applications, 2016, 19(1):11-20. [14] GARG H. Generalized intuitionistic fuzzy entropy-based approach for solving multi-attribute decision-making problems with unknown attribute weights[J]. Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 2019, 89(1):129-139. [15] LIANG X, WEI C, XIA M. New entropy, similarity measure of intuitionistic fuzzy sets and their applications in group decision making[J]. International Journal of Computational Intelligence Systems, 2013, 6(5): 987-1001. [16] PENG X, YUAN H, YANG Y. Pythagorean fuzzy information measures and their applications[J]. International Journal of Intelligent Systems, 2017, 32(10):991-1029. [17] YANG M, HUSSAIN Z. Fuzzy entropy for Pythagorean fuzzy sets with application to multi-criterion decision making[J]. Complexity, 2018, 2018:1-14. [18] 吕印超, 郭嗣宗. 直觉模糊集的熵及其一般形式[J]. 计算机工程与应用, 2011, 47(28):52-55. LÜ Y C, GUO S Z. Entropy of intuitionistic fuzzy sets and its general forms[J]. Computer Engineering and Applications, 2011, 47(28):52-55. [19] BAN A. Approximation of fuzzy numbers by trapezoidal fuzzy numbers preserving the expected interval[J]. Fuzzy Sets and Systems, 2008, 159(11):1327-1344. [20] CHEN D, ZHANG L, JIAO J. Triangle fuzzy number intuitionistic fuzzy aggregation operators and their application to group decision making[C] // International Conference on Artificial Intelligence and Computational Intelligence. Heidelberg: Springer, 2010: 350-357. |
[1] | 万青,马盈仓,魏玲. 基于多粒度的多源数据知识获取[J]. 《山东大学学报(理学版)》, 2020, 55(1): 41-50. |
[2] | 姚晓林, 米据生, 凌密然. 不协调决策表的不协调度[J]. 山东大学学报(理学版), 2014, 49(08): 33-39. |
[3] | 胡明礼,刘思峰 . 不完全信息下概率决策的扩展粗糙集方法[J]. J4, 2006, 41(6): 93-98 . |
|