您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2020, Vol. 55 ›› Issue (4): 108-117.doi: 10.6040/j.issn.1671-9352.4.2019.155

• • 上一篇    

基于梯形模糊数Pythagorean模糊集的熵及决策规则

邵亚斌,王宁   

  1. 重庆邮电大学理学院, 重庆 400065
  • 发布日期:2020-04-09
  • 作者简介:邵亚斌(1974— ),男,博士,教授,研究方向为不确定性处理的数学. E-mail:yb-shao@163.com.
  • 基金资助:
    国家自然科学基金资助项目(61876201,61763044)

Entropy and decision rules based on trapezoidal fuzzy number Pythagorean fuzzy sets

SHAO Ya-bin, WANG Ning   

  1. School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
  • Published:2020-04-09

摘要: 基于智能决策的需要,将梯形模糊数运用到Pythagorean模糊集中,提出了梯形模糊数Pythagorean模糊集的定义,给出了梯形模糊数Pythagorean模糊熵的4种构造函数和它们的代数性质,并证明了构造的合理性,最后运用梯形模糊数Pythagorean模糊熵给出了一种决策规则与决策模型。

关键词: 梯形模糊数, Pythagorean模糊集, 梯形模糊数Pythagorean模糊熵, 决策规则

Abstract: Based on the needs of intelligent decision making, we combine the trapezoidal fuzzy number with Pythagorean fuzzy sets, and give the notion of trapezoidal fuzzy number Pythagorean fuzzy sets and its entropy measure. We give four kinds of constructive functions for trapezoidal fuzzy number Pythagorean fuzzy sets entropy and prove their algebraic properties. Finally, we provide a decision rule and decision model by using the trapezoidal fuzzy number Pythagorean fuzzy sets entropy.

Key words: trapezoidal fuzzy number, Pythagorean fuzzy set, trapezoidal fuzzy number Pythagorean fuzzy set entropy, decision rule.

中图分类号: 

  • TP301
[1] ZADEH L A. Fuzzy sets[J].Information and Control, 1965, 8(3):338-353.
[2] ATANASSOV K T. Intuitionistic fuzzy sets[J]. Fuzzy Sets and Systems, 1986, 20(1):87-96.
[3] ATANASSOV K T, GARGOV G. Interval-valued intuitionistic fuzzy sets[J]. Fuzzy Sets and Systems,1989, 31(3):343-349.
[4] YAGER R R. Pythagorean fuzzy subsets[C] // Proceeding of Joint IFSA World Congress and NAFIPS Annual Meeting. Edmonton: IEEE, 2013: 57-61.
[5] 刘锋, 袁学海. 模糊数直觉模糊集[J]. 模糊系统与数学, 2007, 21(1):88-91. LIU F, YUAN X H. Fuzzy number intuitionistic fuzzy set[J]. Fuzzy Systems and Mathematics, 2007, 21(1):88-91.
[6] 王中兴, 唐芝兰, 牛利利. 基于相对优势度的区间直觉模糊多属性决策方法[J].山东大学学报(理学版), 2012, 47(9):92-97. WANG Z X, TANG Z L, NIU L L. Multi-criteria fuzzy decision-making method with interval-valued intuitionistic fuzzy sets based on relative superiority[J]. Journal of Shandong University(Natural Science), 2011, 47(9):92-97.
[7] KAHRAMAN C, CEBI S, ONAR S C, et al. A novel trapezoidal intuitionistic fuzzy information axiom approach: an application to multicriteria landfill site selection[J]. Engineering Applications of Artificial Intelligence,2018, 67: 157-172.
[8] GARG H. A Linear programming method based on an improved score function for interval-valued Pythagorean fuzzy numbers and its application to decision-making[J]. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 2018, 26(1):67-80.
[9] ZADEH L A. Probability measures of fuzzy events[J]. Journal of Mathematical Analysis & Applications, 1968, 23(2):421-427.
[10] LUCA A, TERMINI S. A definition of a nonprobabilistic entropy in the setting of fuzzy sets theory[J]. Information and Control, 1972, 20(4):301-312.
[11] BURILLO P, BUSTINCE H. Entropy on intuitionistic fuzzy sets and on interval-valued fuzzy sets[J]. Fuzzy Sets and Systems, 1996, 78(3):305-316.
[12] SZMIDT E, KACPRZYK J. Entropy for intuitionistic fuzzy sets[J]. Fuzzy Sets and Systems, 2001, 118(3):467-477.
[13] MENG F, CHEN X. Entropy and similarity measure of Atanassovs intuitionistic fuzzy sets and their application to pattern recognition based on fuzzy measures[J]. Pattern Analysis and Applications, 2016, 19(1):11-20.
[14] GARG H. Generalized intuitionistic fuzzy entropy-based approach for solving multi-attribute decision-making problems with unknown attribute weights[J]. Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 2019, 89(1):129-139.
[15] LIANG X, WEI C, XIA M. New entropy, similarity measure of intuitionistic fuzzy sets and their applications in group decision making[J]. International Journal of Computational Intelligence Systems, 2013, 6(5): 987-1001.
[16] PENG X, YUAN H, YANG Y. Pythagorean fuzzy information measures and their applications[J]. International Journal of Intelligent Systems, 2017, 32(10):991-1029.
[17] YANG M, HUSSAIN Z. Fuzzy entropy for Pythagorean fuzzy sets with application to multi-criterion decision making[J]. Complexity, 2018, 2018:1-14.
[18] 吕印超, 郭嗣宗. 直觉模糊集的熵及其一般形式[J]. 计算机工程与应用, 2011, 47(28):52-55. LÜ Y C, GUO S Z. Entropy of intuitionistic fuzzy sets and its general forms[J]. Computer Engineering and Applications, 2011, 47(28):52-55.
[19] BAN A. Approximation of fuzzy numbers by trapezoidal fuzzy numbers preserving the expected interval[J]. Fuzzy Sets and Systems, 2008, 159(11):1327-1344.
[20] CHEN D, ZHANG L, JIAO J. Triangle fuzzy number intuitionistic fuzzy aggregation operators and their application to group decision making[C] // International Conference on Artificial Intelligence and Computational Intelligence. Heidelberg: Springer, 2010: 350-357.
[1] 万青,马盈仓,魏玲. 基于多粒度的多源数据知识获取[J]. 《山东大学学报(理学版)》, 2020, 55(1): 41-50.
[2] 姚晓林, 米据生, 凌密然. 不协调决策表的不协调度[J]. 山东大学学报(理学版), 2014, 49(08): 33-39.
[3] 胡明礼,刘思峰 . 不完全信息下概率决策的扩展粗糙集方法[J]. J4, 2006, 41(6): 93-98 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!