您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2021, Vol. 56 ›› Issue (1): 35-42.doi: 10.6040/j.issn.1671-9352.4.2020.051

• • 上一篇    

广义正交模糊混合平均算子及其在多属性决策中的应用

杜文胜,徐涛   

  1. 郑州大学商学院, 河南 郑州 450001
  • 发布日期:2021-01-05
  • 作者简介:杜文胜(1987— ),男,博士,副教授,研究方向为决策理论与决策分析. E-mail:wsdu@zzu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(61806182);郑州大学青年教师专项科研启动基金资助项目(32220326);郑州大学经济学管理学新兴学科孵化研究基地项目(101/32610168);河南省高等学校青年骨干教师培养计划资金资助项目

Generalized orthopair fuzzy hybrid aggregation operator and its application to multiple attribute decision making

DU Wen-sheng, XU Tao   

  1. School of Business, Zhengzhou University, Zhengzhou 450001, Henan, China
  • Published:2021-01-05

摘要: 研究了将广义正交模糊集与混合平均算子相结合的决策过程及其应用。利用广义正交模糊隶属度空间比毕达哥拉斯模糊和直觉模糊隶属度空间都大的优势,把混合平均算子推广到广义正交模糊隶属空间中。首先,基于广义正交模糊集和混合平均算子的概念,定义了广义正交模糊混合平均(q-ROFHA)算子;其次,考察了广义正交模糊混合平均算子的相关性质,同时对特殊条件下该算子的退变情形给予说明;最后,通过实例验证了该算子在多属性决策应用中的可行性与合理性,并探讨了不同参数取值对结果的影响。

关键词: 广义正交模糊集, 混合平均算子, 多属性决策

Abstract: Generalized orthopair fuzzy hybrid aggregation operator with its application to decision making is considered in this paper. For the advantage that generalized orthopair fuzzy membership space is larger than those of Pythagorean fuzzy sets and intuitionistic fuzzy sets, we combine hybrid aggregation operator and generalized orthopair fuzzy sets. Firstly, the generalized orthopair fuzzy hybrid aggregation operator is defined based on the concepts of generalized orthopair fuzzy sets and the hybrid aggregation operator. Secondly, we examine the properties of the generalized orthopair fuzzy hybrid aggregation operator. Meanwhile, we explain the degenerations of the developed operator under some special conditions. Finally, the application of generalized orthopair fuzzy hybrid aggregation operator in multiple attribute decision making is verified by an example which shows the feasibility and rationality of the proposed method, and the influence of the parameter within the operator on the ranking results is discussed.

Key words: generalized orthopair fuzzy set, hybrid aggregation operator, multiple attribute decision making

中图分类号: 

  • O159
[1] ZADEH L A. Fuzzy sets[J]. Information and Control, 1965, 8(3):338-353.
[2] ATANASSOV K T. Intuitionistic fuzzy sets[J]. Fuzzy Sets and Systems, 1986, 20(1):87-96.
[3] OWN C M. Switching between type-2 fuzzy sets and intuitionistic fuzzy sets: an application in medical diagnosis[J]. Applied Intelligence, 2009, 31(3):283-291.
[4] 廖虎昌. 直觉模糊偏好决策理论与方法[M]. 北京: 科学出版社, 2017. LIAO Huchang. Intuitionistic fuzzy preferences and decision making: theory and applications[M]. Beijing: Science Press, 2017.
[5] 杜文胜. 直觉模糊序决策系统的部分一致约简[J].计算机科学与探索, 2019, 13(3):514-520. DU Wensheng. Partially consistent reducts of intuitionistic fuzzy ordered decision systems[J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(3):514-520.
[6] YAGER R R. ABBASOV A M. Pythagorean membership grades, complex numbers, and decision making[J]. International Journal of Intelligent Systems, 2013, 28(5):436-452.
[7] YAGER R R. Generalized orthopair fuzzy sets[J]. IEEE Transactions on Fuzzy Systems, 2017, 25(5):1222-1230.
[8] DU W S. Minkowski-type distance measures for generalized orthopair fuzzy sets[J].International Journal of Intelligent Systems, 2018, 33(4):802-817.
[9] DU W S. Correlation and correlation of generalized orthopair fuzzy sets[J]. International Journal of Intelligent Systems, 2019, 34(4):564-583.
[10] DU W S. Research on arithmetic operations over generalized orthopair fuzzy sets[J].International Journal of Intelligent Systems, 2019, 34(5):709-732.
[11] HARSANYI J C. Cardinal welfare, individualistic ethics, and interpersonal comparisons of utility[J]. Journal of Political Economy, 1955, 63(4):309-321.
[12] YAGER R R. On ordered weighted averaging aggregation operators in multicriteria decision making[J]. IEEE Transactions on Fuzzy Systems, Man and Cybernetics, 1988, 18(1):183-190.
[13] 刘卫锋, 常娟, 何霞. 广义毕达哥拉斯模糊集成算子及其决策应用[J]. 控制与决策,2016,31(12):2280-2286. LIU Weifeng, CHANG Juan, HE Xia. Generalized Pythagorean fuzzy aggregation operators and applications in decision making[J]. Control and Decision, 2016, 31(12):2280-2286.
[14] 伍之前, 李登峰. 基于GOWA算子的直觉模糊多属性决策方法[J]. 运筹与管理, 2010, 19(3):60-64. WU Zhiqian, LI Dengfeng. Generalized OWA operators based on multiattribute decision making methodology using intuitionistic fuzzy sets[J]. Operations Research and Management Science, 2010, 19(3):60-64.
[15] XU Z. Intuitionistic fuzzy aggregation operators[J]. IEEE Transactions on Fuzzy Systems, 2007, 15(6):1179-1187.
[16] 李鹏, 沈志杰, 陈胜男, 等. 基于灰色关联法和HA算子的Pythagorean模糊群决策方法[J].运筹与管理,2018,27(10):56-62. LI Peng, SHEN Zhijie, CHEN Shengnan, et al. Pythagorean fuzzy group decision making method based on grey incidence analysis and HA operator [J]. Operations Research and Management Science, 2018, 27(10):56-62.
[17] 王军, 张润彤, 朱晓敏. 广义正交模糊Maclaurin对称平均算子及其应用[J].计算机科学与探索,2019,13(8):1411-1421. WANG Jun, ZHANG Runtong, ZHU Xiaomin. Generalized orthopair fuzzy Maclaurin symmetric mean operators and their application[J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(8):1411-1421.
[18] LIU P D, WANG P. Some q-rung orthopair fuzzy aggregation operators and their applications to multiple-attribute decision making [J]. International Journal of Intelligent Systems, 2018, 33(2):259-280.
[19] WEI G W, GAO H, WEI Y. Some q-rung orthopair fuzzy Heronian mean operators in multiple attribute decision making[J]. International Journal of Intelligent System, 2018, 33(7):1426-1458.
[20] LIU P D, LIU J L. Some q-rung orthopair fuzzy Bonferroni mean operators and their application to multi attribute group decision making[J]. International Journal of Intelligent System, 2018, 33(2):315-347.
[21] GARG H, CHEN S M. Multi attribute group decision making based on neutrality aggregation operators of q-rung orthopair fuzzy sets [J]. Information Sciences, 2020, 517:427-447.
[22] 林宏宇, 张海锋,肖箭,等.基于q-rung orthopair模糊相似测度的多属性决策方法[J].价值工程, 2019, 38(33):251-255. LIN Hongyu, ZHANG Haifeng, XIAO Jian, et al. A multi-attribute decision making method based on q-rung orthopair fuzzy similarity measure [J]. Value Engineering, 2019, 38(33):251-255.
[23] TANG G L, CHICLANA F, LIU P D. A decision-theoretic rough set model with q-rung orthopair fuzzy information and its application in stock investment evaluation[J]. Applied Soft Computing, 2020, 91:106212.
[24] WANG Y M. Using the method of maximizing deviations to make decision for multiindices [J]. Journal of Systems Engineering and Electronics, 1997, 8(3):21-26.
[25] O HAGAN M. Aggregating template or rule antecedents in real-time expert systems with fuzzy set logic[C] //Proceeding 22nd Annual Asilomar Conference on Signals, Systems and Computers. Pacific Grove: Maple Press, 1988: 681-689.
[1] 王中兴,唐芝兰,牛利利. 基于相对优势度的区间直觉模糊多属性决策方法[J]. J4, 2012, 47(9): 92-97.
[2] 章 玲,周德群 . λ模糊测度及其Mbius变换和关联系数间关系的推导[J]. J4, 2007, 42(7): 33-37 .
[3] 张方伟,曲淑英,王志强,姚炳学,曾现洋 . 偏差最小化方法及其在多属性决策中的应用[J]. J4, 2007, 42(3): 32-35 .
[4] 胡明礼,刘思峰 . 不完全信息下概率决策的扩展粗糙集方法[J]. J4, 2006, 41(6): 93-98 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!