《山东大学学报(理学版)》 ›› 2022, Vol. 57 ›› Issue (7): 53-64.doi: 10.6040/j.issn.1671-9352.4.2021.196
• • 上一篇
容斌元,徐媛媛,吕亚兰,张恒汝*
RONG Bin-yuan, XU Yuan-yuan, LÜ Ya-lan, ZHANG Heng-ru*
摘要: 提出了一种融合标签局部相关性的标签分布学习(label distribution learning, LDL)算法,该算法分为3个阶段。初始预测阶段构建多层神经网络模型,将样本的原始特征作为输入、初始预测的标签分布作为输出;局部矫正阶段首先利用k-means聚类算法获得不同类所描述的局部信息,然后针对不同类计算对应的协方差矩阵,利用该矩阵来矫正初始预测的标签分布,获得每个类对应的矫正标签分布;标签融合阶段对矫正后的标签分布进行加权,再与初始预测的标签分布进行融合,得到最终的预测分布。在8个公开数据集上与9种常用的LDL算法进行对比实验,结果表明本文的算法能较好地描述标签局部相关性,在多个主流评估指标上排名靠前。
中图分类号:
[1] COURT, SAPP B, TASKAR B. Learning from partial labels[J]. Journal of Machine Learning Research, 2011, 12(42):1501-1536. [2] ZHANG F W, JIA X Y, LI W W. Tensor-based multi-view label enhancement for multi-label learning[C] //Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence. San Francisco: Morgan Kaufmann, 2020, 3: 2369-2375. [3] LV Jiaqi, WU Tianran, PENG Chenglun, et al. Compact learning for multi-label classification[J]. Pattern Recognition, 2021, 113:107833. [4] XU Ning, LIU Yunpeng, GENG Xin, et al. Label enhancement for label distribution learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2021, 33(4):1632-1643. [5] TAN Chao, CHEN Sheng, GENG Xin, et al. A novel probabilistic label enhancement algorithm for multi-label distribution learning[J/OL]. IEEE Transactions on Knowledge and Data Engineering, 2021. doi: 10.1109/TKDE.2021.3054465. [6] LING Miaogen, GENG Xin. Indoor crowed counting by mixture of Gaussians label distribution learning[J]. IEEE Transactions on Image Processing, 2019, 28(11):5691-5701. [7] 黄雨婷, 徐媛媛, 张恒汝, 等. 融合标签结构依赖性的标签分布学习[J]. 南京大学学报(自然科学), 2020, 56(4):524-532. HUANG Yuting, XU Yuanyuan, ZHANG Hengru, et al. Label distribution learning by exploiting structural label dependency[J]. Journal of Nanjing University(Natural Science), 2020, 56(4):524-532. [8] GENG X, SMITH-MILES K, ZHOU Z H. Facial age estimation by learning from label distributions[C] //Proceedings of the AAAI Conference on Artificial Intelligence. Menlo Park: AAAI, 2010: 451-456. [9] GENG Xin. Label distribution learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2016, 28(7):1734-1748. [10] GAO Yongbiao, ZHANG Yu, GENG Xin. Label enhancement for label distribution learning via prior knowledge[C] //Proceedings of the International Joint Conference on Artificial Intelligence. San Francisco: Morgan Kaufmann, 2020: 3223-3229. [11] GAO Binbin, XING Chao, XIE Chenwei, et al. Deep label distribution learning with label ambiguity[J]. IEEE Transactions on Image Processing, 2017, 26(6):2825-2823. [12] ZHOU Ying, XUE Hui, GENG Xin. Emotion distribution recognition from facial expressions[C] //Proceedings of the ACM International Conference on Multimedia. New York: ACM, 2015:1247-1250. [13] ZHOU Deyu, ZHANG Xuan, GENG Xin, et al. Emotion distribution learning from texts[C] //Proceedings of the Conference on Empirical Methods in Natural Language Processing. Austin: Association for Computational Linguistics. Stroudsburg: ACL, 2016: 638-647. [14] REN Tingting, JIA Xiuyi, LI Weiwei, et al. Label distribution learning with label correlations via low-rank approximation[C] //Proceedings of the International Joint Conference on Artificial Intelligence. San Francisco: Morgan Kaufmann, 2019: 3325-3331. [15] JIA Xiuyi, LI Weiwei, LIU Junyu, et al. Label distribution learning by exploiting label correlations[C] //Proceedings of the AAAI Conference on Artificial Intelligence. Menlo Park: AAAI, 2018: 3310-3317. [16] JIA Xiuyi, LI Zechao, ZHENG Xiang, et al. Label distribution learning with label correlations on local samples[J]. IEEE Transactions on Knowledge and Data Engineering, 2021, 33(4):1619-1631. [17] ALOISE D, DESHPANDE A, HANSEN P, et al. NP-hardness of Euclidean sum-of-squares clustering[J]. Machine Learning, 2009, 75(2):24-248. [18] ELMIRAF, SEYED A S S, YASER D, et al. The dice(sorensen)similarity measures for optimal selection with q-Rung orthopair fuzzy information[C] //International Conference on Intelligent and Fuzzy Systems. Cham: Springer, 2020: 484-493. [19] TIM E, PETER H. Rényi divergence and Kullback-Leibler divergence[J]. IEEE Transactions on Information Theory, 2014, 60(7):3797-3820. [20] GENG Xin, XIA Yu. Head pose estimation based on multivariate label distribution[C] //Computer Vision and Pattern Recognition. Piscataway: IEEE, 2014: 1837-1842. [21] ZHAI Yansheng, DAI Jianhua, SHI Hong. Label distribution learning based on ensemble neural networks[C] //Proceedings of the International Conference on Neural Information Processing. Cham: Springer, 2018: 593-602. [22] ZHAN GHuiying, ZHANG Yu, GENG Xin. Practical age estimation using deep label distribution learning[J]. Frontiers of Computer Science, 2021, 15(3):153318. [23] YIN Xinyou, GOUDRIAAN Jan, VOS Jan, et al. A flexible sigmoid function of determinate growth[J]. Annals of botany, 2003, 91(3):361-371. [24] WANG Feng, LIU Weiyang, LIU Haijun, et al. Additive margin softmax for face verification[J]. IEEE Signal Processing Letters, 2018, 25(7):926-930. [25] YANG Bo, FU Xiao, HONG Mingyi, et al. Towards k-means-friendly spaces: simultaneous deep learning and clustering[C] //Proceedings of the International Conference on Machine Learning. New York: ACM, 2017: 3861-3870. [26] ZHANG Geng, ZHANG Chengchang, ZHANG Huayu. Improved k-means algorithm based on density Canopy[J]. Knowledge-based Systems, 2018, 145:289-297. [27] XIAShuyin, PENG Daowan, MENG Deyu, et al. Ball k-means: fast adaptive clustering with no bounds[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 44(1):87-99. [28] KANUNGO T, MOUNT D M, NETANYAHU N S, et al. An efficient k-means clustering algorithm: analysis andimplementation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7):881-892. [29] TUZEL L, PORIKLI F, MEER P. Regioncovariance: a fast descriptor for detection and classification[J]. Lecture Notes in Computer Science, 2006, 3952:589-600. [30] KINGMA D P, BA J L. Adam: a method for stochasticoptimization[J/OL]. Computer Science, 2014. http://de.arxiv.org/pdf/1412.6980. |
[1] | 武祺然,周力凯,孙金金,王念鸽,余群芳. 浙江省空气质量变化特征研究——基于函数型数据分析[J]. 《山东大学学报(理学版)》, 2021, 56(7): 53-64. |
[2] | 王鑫,左万利,朱枫彤,王英. 基于重要结点的社区发现算法[J]. 山东大学学报 (理学版), 2018, 53(11): 67-77. |
|