山东大学学报(理学版) ›› 2017, Vol. 52 ›› Issue (6): 24-31.doi: 10.6040/j.issn.1671-9352.5.2016.023
孙世昶1,2,林鸿飞1,孟佳娜2*,刘洪波3
SUN Shi-chang1,2, LIN Hong-fei1, MENG Jia-na2*, LIU Hong-bo3
摘要: 为了解决迁移学习的欠适配问题,将粒模型作为候选模型的集合,通过模型选择的方式引入目标域的辅助模型中包含的标注规则,提出粒模型推断中基于似然比的模型选择方法(likelihood ratio model selection, LRMS),实现了辅助模型与粒模型的融合。LRMS保持基于Viterbi算法的标注模型对整条序列进行计算的模式,避免了候选标注器对上下文关系的破坏。通过大量词性标注实验表明LRMS在每个迁移学习任务中都有准确率的提高,从而证明似然比模型选择是一种有效的解决欠适配问题的方法。
中图分类号:
[1] PAN S J, YANG Q. A survey on transfer learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(10):1345-1359. [2] PEDRYCZ W, RUSSO B, SUCCI G. Knowledge transfer in system modeling and its realization through an optimal allocation of information granularity[J]. Applied Soft Computing, 2012, 12(8):1985-1995. [3] 龙明盛. 迁移学习问题与方法研究[D]. 北京:清华大学, 2014. LONG Mingsheng. Transfer learning: problems and methods[J].Beijing: Tsinghua University, 2014. [4] LOPER E, BIRD S. NLTK: the natural language toolkit[C] // Proceedings of the ACL-02 Workshop on Effective tools and methodologies for teaching natural language processing and computational linguistics. Stroudsburg: Association for Computational Linguistics, 2006: 69-72. [5] RABINER L. A tutorial on hidden Markov models and selected applications in speech recognition[J]. Proceedings of the IEEE, 1989, 77(2):257-286. [6] SUTTON C, MCCALLUM A. Composition of conditional random fields for transfer learning[C] // Proceedings of the conference on Human Language Technology and Empirical Methods in Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 2005: 748-754. [7] BRANTS T. TnT: a statistical part-of-speech tagger[C] // Proceedings of the 6th Conference on Applied Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 2000: 224-231. [8] AIT-MOHAND K, PAQUET T, RAGOT N. Combining structure and parameter adaptation of HMMs for printed text recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(9):1716-1732. [9] KIM N S, SUNG J S, HONG D H. Factored MLLR adaptation[J]. Signal Processing Letters, 2011, 18(2):99-102. [10] SONG M, PEDRYCZ W. Granular neural networks: concepts and development schemes[J]. IEEE Transactions on Neural Networks and Learning Systems, 2013, 24(4):542-553. [11] LIM C H, VATS E, CHAN C S. Fuzzy human motion analysis: a review[J]. Pattern Recognition, 2015, 48(5):1773-1796. [12] CAI Q, ZHANG D, ZHENG W, et al. A new fuzzy time series forecasting model combined with ant colony optimization and auto-regression[J]. Knowledge-Based Systems, 2015, 74:61-68. [13] SUN B, GUO H, KARIMI H R, et al. Prediction of stock index futures prices based on fuzzy sets and multivariate fuzzy time series[J]. Neurocomputing, 2015, 151:1528-1536. [14] SIDDIQI S M, GORDON G J, MOORE A W. Fast state discovery for HMM model selection and learning[J] //AISTATS. 2007, 2:492-499. [15] WANG S, ZHAO Y. Online Bayesian tree-structured transformation of HMMs with optimal model selection for speaker adaptation[J]. IEEE Transactions on Speech and Audio Processing, 2001, 9(6):663-677. [16] ESCALANTE H J, MONTES M, SUCAR L E. Particle swarm model selection[J]. Journal of Machine Learning Research, 2009, 10(Feb):405-440. [17] GOLDWATER S, GRIFFITHS T. A fully Bayesian approach to unsupervised part-of-speech tagging[C] // Proceedings of the 45th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: Association for Computational Linguistics, 2007, 45:744-751. [18] PEDRYCZ W. Granular computing: analysis and design of intelligent systems [M]. Boca Raton: CRC Press, 2013. [19] GAUVAIN J L, LEE C H. Maximum a posteriori estimation for multivariate Gaussian mixture observations of Markov chains[J]. IEEE Transactions on Speech and Audio Processing, 1994, 2(2):291-298. |
[1] | 余传明,冯博琳,田鑫,安璐. 基于深度表示学习的多语言文本情感分析[J]. 山东大学学报(理学版), 2018, 53(3): 13-23. |
[2] | 马云艳,栾贻会*. 基于局部LRS方法的稀疏信号片段检测[J]. J4, 2012, 47(12): 1-5. |
[3] | 黄贤立,罗冬梅. 倾向性文本迁移学习中的特征重要性研究[J]. J4, 2010, 45(7): 13-17. |
[4] | . 具有AR(2)误差非线性回归模型的联合检验[J]. J4, 2009, 44(7): 38-43. |
|