《山东大学学报(理学版)》 ›› 2024, Vol. 59 ›› Issue (3): 51-60.doi: 10.6040/j.issn.1671-9352.7.2023.4633
秦宏伍1,2(),王立铮1,*(),傅渝1,隋沐翾1,何秉高1,2
Hongwu QIN1,2(),Lizheng WANG1,*(),Yu FU1,Muxuan SUI1,Binggao HE1,2
摘要:
标准灰狼优化(grey wolf optimizer,GWO)算法存在局部探索和全局开发难以平衡等问题。针对此类问题,提出基于多策略结合的灰狼优化算法(multi-strategy grey wolf optimization,MSGWO)。首先,灰狼算法引入非线性收敛因子和Tent映射;然后,利用广泛学习、精英学习和协调学习三种策略,在GWO优化过程中协调工作;最后,利用轮盘赌进行策略选择,以获得更具多样性灰狼位置和更具全局代表性的个体。通过标准基准函数测试,采用算法变体进行对比。结果显示,MSGWO算法拥有较好的全局搜索、局部开发的平衡能力以及更快的收敛速度。在此基础上,利用MSGWO算法优化回声状态网络(echo state networks, ESN)超参数进行回归预测。实验表明平均绝对百分比误差为0.38%,拟合程度达到0.98,验证了MSGWO算法的优化性能。
中图分类号:
1 |
SULTANA N , HOSSAIN S , ABUSAAD M , et al. Prediction of biodiesel production from microalgal oil using Bayesian optimization algorithm-based machine learning approaches[J]. Fuel, 2022, 309, 122184.
doi: 10.1016/j.fuel.2021.122184 |
2 | ZHANG Yudong, WANG Shuihua, JI Genlin, et al. An MR brain images classifier system via particle swarm optimization and kernel support vector machine[J/OL]. The Scientific World Journal, 2013, 2013: 130134[2022-10-10]. https://doi.org/10.1155/2013/130134. |
3 | 李真, 王帆, 王冉珺. 一种结合灰狼算法的粒子群优化算法[J]. 计算机测量与控制, 2021, 29 (10): 217- 222. |
LI Zhen , WANG Fan , WANG Ranjun . A particle swarm optimization algorithm combined with grey wolf algorithm[J]. Computer Measurement and Control, 2021, 29 (10): 217- 222. | |
4 | MORRIS G M , GOODSELL D S , HALLIDAY R S , et al. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function[J]. Journal of Computational Chemistry, 2015, 19 (14): 1639- 1662. |
5 | KRISHNANAND K N , GHOSE D . Glowworm swarm optimisation: a new method for optimising multi-modal functions[J]. International Journal of Computational I, 2009, 1 (1): 93- 119. |
6 | GAO Weifeng , LIU Sanyang . A modified artificial bee colony algorithm[J]. Computers & Operations Research, 2012, 39 (3): 687- 697. |
7 |
MIRJALILI S . Dragonfly algorithm: a new metaheuristic optimization technique for solving single-objective, discrete, and multi-objective problems[J]. Neural Computing and Applications, 2016, 27 (4): 1053- 1073.
doi: 10.1007/s00521-015-1920-1 |
8 |
ALJARAH I , FARIS H , MIRJALILI S . Optimizing connection weights in neural networks using the whale optimization algorithm[J]. Soft Computing, 2018, 22 (1): 1- 15.
doi: 10.1007/s00500-016-2442-1 |
9 | GONG Wenyin , CAI Zhihua . Parameter optimization of PEMFC model with improved multi-strategy adaptive differential evolution[J]. Engineering Applications of Artificial Intelligence, 2014, 27 (1): 28- 40. |
10 | XIONG Guojiang , SHI Dongyuan , DUAN Xianzhong . Multi-strategy ensemble biogeography-based optimization for economic dispatch problems[J]. Applied Energy, 2013, 111 (4): 801- 811. |
11 | WANG H , WU Z , RAHNAMAYAN S , et al. Multi-strategy ensemble artificial bee colony algorithm[J]. Information Sciences, 2014, 279 (1): 587- 603. |
12 | DU Wenlin , LI Bin . Multi-strategy ensemble particle swarm optimization for dynamic optimization[J]. Information Sciences, 2008, 178 (15): 3096- 3109. |
13 | LI M Q , XU L P , XU N , et al. SAR image segmentation based on improved grey wolf optimization algorithm and fuzzy c-means[J]. Mathematical Problems in Engineering, 2018, 2018 (10): 1- 11. |
14 | MIRJALILI S , MIRJALILI S M , LEWIS A D . Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69 (1): 46- 61. |
15 | 马晓宁, 李笑含. 基于Tent混沌映射的可复制的鲸鱼算法[J]. 计算机仿真, 2022, 39 (8): 363- 368. |
MA Xiaoning , LI Xiaohan . A replicable whale algorithm based on tent chaotic mapping[J]. Computer Simulation, 2022, 39 (8): 363- 368. | |
16 | 张晓凤, 王秀英. 灰狼优化算法研究综述[J]. 计算机科学, 2019, 46 (3): 30- 38. |
ZHANG Xiaofeng , WANG Xiuying . Review of grey wolf optimization algorithms[J]. Computer Science, 2019, 46 (3): 30- 38. | |
17 | MITTAL N, SINGH U, SOHI B S. Modified grey wolf optimizer for global engineering optimization[J/OL]. Applied Computational Intelligence and Soft Computing, 2016, 2016: 7950348[2022-10-10]. https://doi.org/10.1155/2016/7950348. |
18 | MALIK M R S, MOHIDEEN E R, ALI L. Weighted distance grey wolf optimizer for global optimization problems[C]//2015 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC2015). Tirunelveli, India: Institute of Electrical and Electronics Engineers, 2015: 1-6. |
[1] | 齐平, 王福成, 王必晴. 一种基于图模型的可信云资源调度算法[J]. 山东大学学报(理学版), 2018, 53(1): 63-74. |
[2] | 谢建民,姚兵,赵廷刚. 广义太阳图Sm,n奇优雅标号算法及实现[J]. 山东大学学报(理学版), 2016, 51(4): 79-85. |
[3] | 张春英, 王立亚, 刘保相. 基于覆盖的区间概念格动态压缩原理与实现[J]. 山东大学学报(理学版), 2014, 49(08): 15-21. |
[4] | 宋乐辉,陈月辉,潘 萌 . 动态系统的演化建模[J]. J4, 2008, 43(11): 27-30 . |
[5] | 郑向伟,刘 弘 . 一种多样性引导的两阶段多目标微粒群算法[J]. J4, 2008, 43(11): 5-10 . |
[6] | 袁晓航,杜小勇 . iRIPPER——一种改进的基于规则学习的文本分类算法[J]. J4, 2007, 42(11): 66-68 . |
[7] | 凡嘉琛,王平心,杨习贝. 基于三支决策的密度敏感谱聚类[J]. 《山东大学学报(理学版)》, 2023, 58(1): 59-66. |
[8] | 齐平,王福成,王必晴,梁昌勇. 基于失效规律感知的可靠动态级云资源调度算法[J]. 《山东大学学报(理学版)》, 2019, 54(1): 103-115. |
[9] | 周鹏,伊静,朱振方,刘培玉. 面向不平衡分类的固定半径最近邻逐步竞争算法(FRNNPC)[J]. 《山东大学学报(理学版)》, 2019, 54(3): 102-109. |
|