您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2024, Vol. 59 ›› Issue (3): 51-60.doi: 10.6040/j.issn.1671-9352.7.2023.4633

•   • 上一篇    下一篇

基于多策略结合的灰狼优化算法及应用

秦宏伍1,2(),王立铮1,*(),傅渝1,隋沐翾1,何秉高1,2   

  1. 1. 长春大学电子信息工程学院,吉林 长春 130000
    2. 吉林省人体健康状态辨识与机能增强重点实验室(长春大学),吉林 长春 130022
  • 收稿日期:2023-04-29 出版日期:2024-03-20 发布日期:2024-03-06
  • 通讯作者: 王立铮 E-mail:qinhongwu@ccu.edu.cn;wangliz0117@163.com
  • 作者简介:秦宏伍(1976—),男,教授,博士生导师,博士,研究方向为信息测量与控制系统、深度学习与智能控制. E-mail: qinhongwu@ccu.edu.cn
  • 基金资助:
    吉林省科技厅资助项目(20210402081GH);吉林省发改委资助项目(2023C042-4);吉林省人社厅资助项目(2023RY17)

Grey wolf optimization algorithm based on multi-strategy combination and its application

Hongwu QIN1,2(),Lizheng WANG1,*(),Yu FU1,Muxuan SUI1,Binggao HE1,2   

  1. 1. College of Electronic Information Engineering, Changchun University, Changchun 130000, Jilin, China
    2. Jilin Provincial Key Laboratory of Human Health Status Identification and Function Enhancement (Changchun University), Changchun 130022, Jilin, China
  • Received:2023-04-29 Online:2024-03-20 Published:2024-03-06
  • Contact: Lizheng WANG E-mail:qinhongwu@ccu.edu.cn;wangliz0117@163.com

摘要:

标准灰狼优化(grey wolf optimizer,GWO)算法存在局部探索和全局开发难以平衡等问题。针对此类问题,提出基于多策略结合的灰狼优化算法(multi-strategy grey wolf optimization,MSGWO)。首先,灰狼算法引入非线性收敛因子和Tent映射;然后,利用广泛学习、精英学习和协调学习三种策略,在GWO优化过程中协调工作;最后,利用轮盘赌进行策略选择,以获得更具多样性灰狼位置和更具全局代表性的个体。通过标准基准函数测试,采用算法变体进行对比。结果显示,MSGWO算法拥有较好的全局搜索、局部开发的平衡能力以及更快的收敛速度。在此基础上,利用MSGWO算法优化回声状态网络(echo state networks, ESN)超参数进行回归预测。实验表明平均绝对百分比误差为0.38%,拟合程度达到0.98,验证了MSGWO算法的优化性能。

关键词: 灰狼优化算法, 多策略, 轮盘赌, 收敛因子, 回声状态网络

Abstract:

The standard grey wolf optimizer (GWO) algorithm has issues such as difficulty balancing local exploration and global development. A multi-strategy grey wolf optimization algorithm (MSGWO), based on the fusion of various strategies, is presented to address such problems. First, the grey wolf algorithm introduces the Tent map and a nonlinear convergence factor. Then, to coordinate attempts in the GWO optimization process, the paper applies three learning strategies: extensive learning, elite learning, and coordinated learning. Finally, the paper uses roulette wheel for strategy selection to obtain more diverse wolf positions and globally representative individuals and utilizes benchmark function testing to compare algorithm variations. The outcomes demonstrate that the MSGWO algorithm has a faster convergence speed and a good balance between local development and global search. Based on this, the echo state networks (ESN) hyperparameter for regression prediction is optimized using the MSGWO method. The experiment demonstrates that the MSGWO algorithm performs optimally with an average absolute percentage error of 0.38 percent and a fitting degree of 0.98.

Key words: grey wolf optimizer, multiple strategies, roulette, convergence factor, echo state network

中图分类号: 

  • TP301.6

图1

MSGWO算法流程图"

表1

单峰标准基准函数"

表达式 维度 搜索区间 最优值
$f_1(x)=\sum\limits_{i=1}^n x_i^2$ 30 [-100, 100] 0
$f_2(x)=\sum\limits_{i=1}^n\left|x_i\right|+\prod\limits_{i=1}^n\left|x_i\right|$ 30 [-10, 10] 0
$f_3(x)=\sum\limits_{i=1}^n\left(\sum\limits_{j-1}^i x_j\right)^2$ 30 [-100, 100] 0
$f_4(x)=max_i\left\{\left|x_i\right|, 1 \leqslant i \leqslant n\right\}$ 30 [-100, 100] 0
$f_5(x)=\sum\limits_{i=1}^{n-1}\left[100\left(x_{i+1}-x_i^2\right)^2+\left(x_i-1\right)^2\right]$ 30 [-30, 30] 0
$f_6(x)=\sum\limits_{i=1}^n\left(\left[x_i+0.5\right]\right)^2$ 30 [-100, 100] 0
$f_7(x)=\sum\limits_{i=1}^n i x_i^4+\operatorname{random}[0, 1)$ 30 [-1.28, 1.28] 0

表2

多峰标准基准函数"

表达式 维度 搜索区间 最优值
$f_8(x)=\sum\limits_{i=1}^n-x_i \sin \left(\sqrt{\left|x_i\right|}\right)$ 30 [-500, 500] -2 094.9
$f_9(x)=\sum\limits_{i=1}^n\left[x_i^2-10 \cos \left(2 \pi x_i\right)+10\right]$ 30 [-5.12, 5.12] 0
$f_{10}(x)=-20 \exp \left(-0.2 \sqrt{1 / n \sum\limits_{i=1}^n x_i^2}-\exp \left(1 / n \sum\limits_{i=1}^n \cos \left(2 \pi x_i\right)\right)\right)+20+\mathrm{e}$ 30 [-32, 32] 0
$f_{11}(x)=1 / 4000 \sum\limits_{i=1}^n x_i^2-\prod\limits_{i=1}^n \cos \left(x_i / \sqrt{i}\right)+1$ 30 [-600, 600] 0
$\begin{aligned}f_{12}(x)= & \pi / n\left\{10 \sin \left(\pi y_1\right)+\sum\limits_{i=1}^{n-1}\left(y_i-1\right)^2\left[1+\sin \left(\pi y_{i+1}\right)\right]+\left(y_n-1\right)^2\right\} \\& +\sum\limits_{i=1}^n u\left(x_i, 10, 100, 4\right), y_i=1+\frac{x_i+1}{4}\end{aligned}$ 30 [-50, 50] 0

表3

单峰函数实验数据对比"

GWO MIGWO MAGWO PSO MSGWO
f1 平均值 7.50E-28 2.78E-36 2.22E+03 3.85E-04 0.00E+00
标准差 1.46E-27 4.03E-36 9.25E+02 1.40E-03 0.00E+00
f2 平均值 1.18E-16 8.47E-22 1.71E+01 3.93E-02 5.25E-219
标准差 1.23E-16 1.15E-21 4.42E+00 4.76E-02 0.00E+00
f3 平均值 2.63E-05 1.56E-06 4.42E+04 8.44E+01 0.00E+00
标准差 9.73E-05 4.85E-06 9.28E+03 2.34E+01 0.00E+00
f4 平均值 5.02E-07 2.32E-09 8.57E+01 1.10E+00 7.80E-291
标准差 5.07E-07 3.34E-09 4.88E+00 2.05E-01 0.00E+00
f5 平均值 2.71E+01 2.68E+01 2.47E+06 9.96E+01 2.79E+01
标准差 6.72E-01 6.40E-01 1.58E+06 6.51E+01 7.37E-01
f6 平均值 8.51E-01 6.86E-01 2.73E+03 1.48E-04 1.81E+00
标准差 4.45E-01 3.55E-01 8.68E+02 1.38E-04 7.56E-01
f7 平均值 2.00E-03 1.50E-03 1.33E+00 1.84E-01 5.30E-05
标准差 1.10E-03 6.94E-04 6.06E-01 6.87E-02 6.84E-05

表4

多峰函数实验数据对比"

GWO MIGWO MAGWO PSO MSGWO
f8 平均值 -6.03E+03 -5.55E+03 -4.49E+03 -4.89E+03 -5.82E+03
标准差 9.65E+02 1.23E+03 2.87E+02 1.28E+03 1.47E+03
f9 平均值 2.74E+00 1.82E-01 2.44E+02 5.94E+01 0.00E+00
标准差 3.49E+00 9.98E-01 3.42E+01 1.56E+01 0.00E+00
f10 平均值 9.62E-14 2.29E-14 2.00E+01 2.76E-01 4.20E-15
标准差 1.37E-14 4.70E-15 5.70E-03 5.55E-01 9.01E-16
f11 平均值 7.65E-04 8.53E-04 2.73E+01 7.60E-03 0.00E+00
标准差 2.90E-03 3.30E-03 1.42E+01 8.70E-03 0.00E+00
f12 平均值 5.27E-02 3.59E-02 2.75E+06 1.04E-02 1.46E-01
标准差 2.97E-02 1.52E-02 2.58E+06 4.17E-02 7.06E-02

图2

函数f1—f12曲线收敛图"

表5

实验结果数据对比"

MAE MAPE RMSEP R2
LSTM 3.700 4 0.008 1 4.708 6 0.945 05
ELM 3.262 7 0.007 2 4.181 9 0.938 56
ESN 3.532 7 0.007 8 4.452 1 0.930 25
GWO-ESN 1.967 1 0.004 3 2.506 8 0.977 88
MAGWO-ESN 1.986 2 0.004 4 2.524 6 0.977 57
MSGWO-ESN 1.725 1 0.003 8 2.198 8 0.982 99

图3

预测结果对比图"

图4

预测结果误差图"

1 SULTANA N , HOSSAIN S , ABUSAAD M , et al. Prediction of biodiesel production from microalgal oil using Bayesian optimization algorithm-based machine learning approaches[J]. Fuel, 2022, 309, 122184.
doi: 10.1016/j.fuel.2021.122184
2 ZHANG Yudong, WANG Shuihua, JI Genlin, et al. An MR brain images classifier system via particle swarm optimization and kernel support vector machine[J/OL]. The Scientific World Journal, 2013, 2013: 130134[2022-10-10]. https://doi.org/10.1155/2013/130134.
3 李真, 王帆, 王冉珺. 一种结合灰狼算法的粒子群优化算法[J]. 计算机测量与控制, 2021, 29 (10): 217- 222.
LI Zhen , WANG Fan , WANG Ranjun . A particle swarm optimization algorithm combined with grey wolf algorithm[J]. Computer Measurement and Control, 2021, 29 (10): 217- 222.
4 MORRIS G M , GOODSELL D S , HALLIDAY R S , et al. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function[J]. Journal of Computational Chemistry, 2015, 19 (14): 1639- 1662.
5 KRISHNANAND K N , GHOSE D . Glowworm swarm optimisation: a new method for optimising multi-modal functions[J]. International Journal of Computational I, 2009, 1 (1): 93- 119.
6 GAO Weifeng , LIU Sanyang . A modified artificial bee colony algorithm[J]. Computers & Operations Research, 2012, 39 (3): 687- 697.
7 MIRJALILI S . Dragonfly algorithm: a new metaheuristic optimization technique for solving single-objective, discrete, and multi-objective problems[J]. Neural Computing and Applications, 2016, 27 (4): 1053- 1073.
doi: 10.1007/s00521-015-1920-1
8 ALJARAH I , FARIS H , MIRJALILI S . Optimizing connection weights in neural networks using the whale optimization algorithm[J]. Soft Computing, 2018, 22 (1): 1- 15.
doi: 10.1007/s00500-016-2442-1
9 GONG Wenyin , CAI Zhihua . Parameter optimization of PEMFC model with improved multi-strategy adaptive differential evolution[J]. Engineering Applications of Artificial Intelligence, 2014, 27 (1): 28- 40.
10 XIONG Guojiang , SHI Dongyuan , DUAN Xianzhong . Multi-strategy ensemble biogeography-based optimization for economic dispatch problems[J]. Applied Energy, 2013, 111 (4): 801- 811.
11 WANG H , WU Z , RAHNAMAYAN S , et al. Multi-strategy ensemble artificial bee colony algorithm[J]. Information Sciences, 2014, 279 (1): 587- 603.
12 DU Wenlin , LI Bin . Multi-strategy ensemble particle swarm optimization for dynamic optimization[J]. Information Sciences, 2008, 178 (15): 3096- 3109.
13 LI M Q , XU L P , XU N , et al. SAR image segmentation based on improved grey wolf optimization algorithm and fuzzy c-means[J]. Mathematical Problems in Engineering, 2018, 2018 (10): 1- 11.
14 MIRJALILI S , MIRJALILI S M , LEWIS A D . Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69 (1): 46- 61.
15 马晓宁, 李笑含. 基于Tent混沌映射的可复制的鲸鱼算法[J]. 计算机仿真, 2022, 39 (8): 363- 368.
MA Xiaoning , LI Xiaohan . A replicable whale algorithm based on tent chaotic mapping[J]. Computer Simulation, 2022, 39 (8): 363- 368.
16 张晓凤, 王秀英. 灰狼优化算法研究综述[J]. 计算机科学, 2019, 46 (3): 30- 38.
ZHANG Xiaofeng , WANG Xiuying . Review of grey wolf optimization algorithms[J]. Computer Science, 2019, 46 (3): 30- 38.
17 MITTAL N, SINGH U, SOHI B S. Modified grey wolf optimizer for global engineering optimization[J/OL]. Applied Computational Intelligence and Soft Computing, 2016, 2016: 7950348[2022-10-10]. https://doi.org/10.1155/2016/7950348.
18 MALIK M R S, MOHIDEEN E R, ALI L. Weighted distance grey wolf optimizer for global optimization problems[C]//2015 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC2015). Tirunelveli, India: Institute of Electrical and Electronics Engineers, 2015: 1-6.
[1] 齐平, 王福成, 王必晴. 一种基于图模型的可信云资源调度算法[J]. 山东大学学报(理学版), 2018, 53(1): 63-74.
[2] 谢建民,姚兵,赵廷刚. 广义太阳图Sm,n奇优雅标号算法及实现[J]. 山东大学学报(理学版), 2016, 51(4): 79-85.
[3] 张春英, 王立亚, 刘保相. 基于覆盖的区间概念格动态压缩原理与实现[J]. 山东大学学报(理学版), 2014, 49(08): 15-21.
[4] 宋乐辉,陈月辉,潘 萌 . 动态系统的演化建模[J]. J4, 2008, 43(11): 27-30 .
[5] 郑向伟,刘 弘 . 一种多样性引导的两阶段多目标微粒群算法[J]. J4, 2008, 43(11): 5-10 .
[6] 袁晓航,杜小勇 . iRIPPER——一种改进的基于规则学习的文本分类算法[J]. J4, 2007, 42(11): 66-68 .
[7] 凡嘉琛,王平心,杨习贝. 基于三支决策的密度敏感谱聚类[J]. 《山东大学学报(理学版)》, 2023, 58(1): 59-66.
[8] 齐平,王福成,王必晴,梁昌勇. 基于失效规律感知的可靠动态级云资源调度算法[J]. 《山东大学学报(理学版)》, 2019, 54(1): 103-115.
[9] 周鹏,伊静,朱振方,刘培玉. 面向不平衡分类的固定半径最近邻逐步竞争算法(FRNNPC)[J]. 《山东大学学报(理学版)》, 2019, 54(3): 102-109.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李永明1, 丁立旺2. PA误差下半参数回归模型估计的r-阶矩相合[J]. J4, 2013, 48(1): 83 -88 .
[2] 董丽红1,2,郭双建1. Yetter-Drinfeld模范畴上的弱Hopf模基本定理[J]. J4, 2013, 48(2): 20 -22 .
[3] 程李晴1,2, 石巧连2. 一种新的混合共轭梯度算法[J]. J4, 2010, 45(6): 81 -85 .
[4] 赵同欣1,刘林德1*,张莉1,潘成臣2,贾兴军1. 紫藤传粉昆虫与花粉多型性研究[J]. 山东大学学报(理学版), 2014, 49(03): 1 -5 .
[5] 马建玲 . 菱体型消色差相位延迟器的光谱特性分析[J]. J4, 2007, 42(7): 27 -29 .
[6] 程智1,2,孙翠芳2,王宁1,杜先能1. 关于Zn的拉回及其性质[J]. J4, 2013, 48(2): 15 -19 .
[7] 张爱平,李刚 . LR拟正规Ehresmann半群[J]. J4, 2006, 41(5): 44 -47 .
[8] 霍玉洪,季全宝. 一类生物细胞系统钙离子振荡行为的同步研究[J]. J4, 2010, 45(6): 105 -110 .
[9] 石长光 . Faddeev模型中的多孤立子解[J]. J4, 2007, 42(7): 38 -40 .
[10] 马继雄,江莉,祁驭矜,向凤宁,夏光敏 . 祁连龙胆愈伤组织和再生植株的生长及其两种药效成分分析[J]. J4, 2006, 41(6): 157 -160 .