您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

J4

• 论文 • 上一篇    下一篇

垃圾邮件过滤研究与实现

黄 涛1,谢 嵘2   

  1. 1. 肇庆学院软件学院, 广东 肇庆 526061;2. 华南理工大学计算机科学与工程学院, 广东 广州 510640
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2006-10-24 发布日期:2006-10-24
  • 通讯作者: 黄 涛

SPAM filtering and its realization

HUANG Tao1,XIE Rong2   

  1. 1. Computer Science Department, Zhaoqing University, Zhaoqing 526061, Guangdong;2. South China University of Technology, School of Computer Science & Engineering, Guangzhou 510640
  • Received:1900-01-01 Revised:1900-01-01 Online:2006-10-24 Published:2006-10-24
  • Contact: HUANG Tao

摘要: 系统以垃圾邮件过滤为目标,设计并实现了一个垃圾邮件过滤系统SpamBlocker.该系统整合规则过滤、贝叶斯分类、病毒检测和黑/白名单等垃圾邮件检测技术,采用评分方法判断邮件的垃圾性,并利用规则过滤给贝叶斯分类提供学习样本,提高了系统对新垃圾邮件的适应性.

关键词: 垃圾邮件, 规则过滤, 贝叶斯分类

Abstract: Aiming to concentrate on SPAM filtering, a filter system against spam named SpamBlocker was designed and implemented. This system integrates inspection technology for filtering spam such as rules-filtering, Bayes classification, virus scanning and black/white list. Furthermore, it adopts the rules of scoring to determine which mail is spam and to provide Bayes classification with samples for improvement by the filtering rules. As a result, it improves the system adaptation of filtering the emerging SPAM.

Key words: Bayes classification , filtering rule, SPAM

中图分类号: 

  • TP311
[1] 董源1,徐雅斌1,2*,李卓1,2,李艳平1. 基于社会计算和机器学习的垃圾邮件识别方法的研究[J]. J4, 2013, 48(7): 72-78.
[2] 蒋盛益1,庞观松2,张建军3. 基于聚类的垃圾邮件识别技术研究[J]. J4, 2011, 46(5): 71-76.
[3] 袁 方,苑俊英 . 基于类别核心词的朴素贝叶斯中文文本分类[J]. J4, 2006, 41(3): 46-49 .
[4] 刘 慧,马 军,雷景生,连 莉 . 基于特征域词频的邮件过滤方法的研究[J]. J4, 2006, 41(3): 50-53 .
[5] 徐 选,丁 伟 . 用于邮件过滤的标准样本生成系统研究[J]. J4, 2006, 41(3): 85-89 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!