您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

J4

• 论文 • 上一篇    下一篇

广义(R,S)-对称矩阵反问题的最小二乘解

宋俊玲,田金亭,赵建立   

  1. 聊城大学数学科学学院, 山东 聊城 252059
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2006-10-24 发布日期:2006-10-24
  • 通讯作者: 宋俊玲

The least-squares solutions of inverse problems for generalized(R,S)-symmetric matrices

SONG Jun-ling, TIAN Jin-ting, ZHAO Jian-li   

  1. School of Mathematics Science, Liaocheng University, Liaocheng 252059, Shandong, China
  • Received:1900-01-01 Revised:1900-01-01 Online:2006-10-24 Published:2006-10-24
  • Contact: SONG Jun-ling

摘要: 讨论了广义(R,S)-对称矩阵反问题的最小二乘解,得到了解存在的充要条件及通式,并研究了最佳逼近问题,给出了解的具体表达式。

关键词: 广义(R, S)-对称矩阵, 最佳逼近 , 最小二乘解

Abstract: The least-squares solutions of inverse problems for generalized(R,S)-symmetric matrices were discussed.The necessary and sufficient conditions were presented, and the general form was given.The optimal approximation was discussed, and the precise expression of the solution was provided.

Key words: the optimal approximation , leastsquares solution, S)-symmetric matrices, generalized (R

中图分类号: 

  • O151
[1] 梁茂林,代丽芳,杨晓亚. 线性流形上行反对称矩阵反问题的最小二乘解及最佳逼近[J]. J4, 2012, 47(4): 121-126.
[2] 赵琳琳1,陈果良1,赵建立2. 矩阵方程AXAT=B的对称反自反最小二乘解[J]. J4, 2010, 45(10): 1-3.
[3] 岳强 畅大为. 亏秩线性方程组的PSD迭代解法[J]. J4, 2009, 44(10): 30-35.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!