您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

J4

• 论文 •    下一篇

Banach空间非柱形域上微分系统解的存在性

刘新民1,崔玉军2*   

  1. 1. 山东科技大学经济管理学院, 山东 青岛 266510;2. 山东科技大学信息科学与工程学院, 山东 青岛 266510
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2006-10-24 发布日期:2006-10-24
  • 通讯作者: 刘新民

Existence of solutions to differential system on the non-cylindrical domain in Banach spaces

LIU Xin-min1, CUI Yu-jun2*   

  1. 1. College of Economic and Management, Shandong University of Science and Technology, Qingdao 266510, Shandong, China;2. College of Information Science and Engineering, Shandong University of Science and Technology, Qingdao 266510, Shandong
  • Received:1900-01-01 Revised:1900-01-01 Online:2006-10-24 Published:2006-10-24
  • Contact: LIU Xin-min

摘要: 考虑在Banach空间非柱形域Ω上,微分系统 (IVP;τ,z0) z′=x′ y′=f1(t,x,y) f2(t,x,y)=f(t,z), (t,z)∈Ω, z(τ)=x(τ) y(τ)=z0=x0 y0 解的局部存在性,其中f1,f2分别满足紧性条件与耗散性条件,得到的结果推广并完善了已有的相关结果。

关键词: 微分系统, 非柱形域 , 耗散性条件, 非紧性条件

Abstract: The existence of solutions for the following differential system (IVP;τ,z0) z′=x′ y′=f1(t,x,y) f2(t,x,y)=f(t,z), (t,z)∈Ω, z(τ)=x(τ) y(τ)=z0=x0 y0 in Banach space was investigated, where f1 and f2 respectively meet noncompact condition and dissipative condition. The results extend and improve some known results.

Key words: non-cylindrical domain , dissipative condition, non-compact condition, differential system

中图分类号: 

  • O175.15
[1] 张春艳,郝胜男,冯立超. 一类非线性脉冲微分系统爆炸解的随机压制[J]. 山东大学学报(理学版), 2016, 51(2): 29-36.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!