您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

J4

• 论文 • 上一篇    下一篇

非线性BBM方程的数值解法

左进明   

  1. 山东理工大学数学与信息科学学院, 山东 淄博 255049
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2006-10-24 发布日期:2006-10-24
  • 通讯作者: 左进明

A computational method for the nonlinear BBM equation

ZUO Jin-ming   

  1. School of Mathematics and Information Science, Shandong University of Technology, Zibo 255049, Shandong, China
  • Received:1900-01-01 Revised:1900-01-01 Online:2006-10-24 Published:2006-10-24
  • Contact: ZUO Jin-ming

摘要: 采用一种线性隐格式来解非线性BBM方程,这种方法是无条件稳定的。数值实验描述了单个线性波形运动的情形以及两个波形交互的情形,结果表明,这种格式使用简便,稳定性好,有很好的精度。而且它们均满足波传播的运动规律。

关键词: 数值解法, 孤立子波 , BBM方程

Abstract: A computational method based on a linearized implicit scheme was proposed for the solution of the BBM equation.An important advantage to be gained from the linearized implicit method is unconditional stablility. Numerical results portraying a single line-soliton solution and the interaction of two-line solitions were reported for the BBM equation. The results show that the method has good stability and accuracy.

Key words: solition waves , BBM equation, computational method

中图分类号: 

  • O241.82
[1] 左进明 . 广义KdV方程的数值解法[J]. J4, 2008, 43(6): 44-48 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!