您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

J4 ›› 2010, Vol. 45 ›› Issue (7): 102-107.

• 论文 • 上一篇    下一篇

基于特征缺省的最小类内方差支持向量机

宋玉丹,王士同*   

  1. 江南大学信息学院, 江苏 无锡 214122
  • 收稿日期:2010-04-02 出版日期:2010-07-16 发布日期:2010-09-06
  • 通讯作者: 王士同 (1964-),男,教授,博士生导师,主要研究方向为模式识别、人工智能、生物信息学.
  • 作者简介:宋玉丹(1988-),女,硕士研究生,主要研究方向模式识别与人工智能.Email:maggie87626@163.com
  • 基金资助:

    江苏省自然科学基金资助项目(BK2009067)

Minimum within-class variance SVM with absent features

SONG Yu-dan, WANG Shi-tong*   

  1. College of Information Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
  • Received:2010-04-02 Online:2010-07-16 Published:2010-09-06

摘要:

最近提出的基于特征缺失的支持向量机(support vector machine with absent features,AF-SVM)在处理具有特征缺失的数据分类时,得到的分类超平面不能很好地适应数据的总体分布,并存在两类误分的比例相差比较大的问题。为此,本文通过引入最小类内方差支持向量机(minimum class variance SVM, MCVSVM)分类机制,提出了基于特征缺失的最小类内方差支持向量机(minimum within-class variance SVM with absent features,AF-V-SVM)。AF-V-SVM一方面可以依据数据集的分布特性,改善分类超平面的方向性;另一方面,通过自由设置分类间隔的定义空间,调整误分的比例。实验表明,与其他基于特征缺省的分类方法相比,该方法不仅提高了分类正确率而且使分类效果更加合理。

关键词: 特征缺省;类内方差;支持向量机;模式分类

Abstract:

In the classification of data with absent features, the lately proposed support vector machine with absent features (AFSVM) has some drawbacks: the obtained classification hyper plane with AF-SVM can not well adapt to the data’s overall distribution, and the proportion of the misclassified data differs greatly between the two classes. To overcome these drawbacks, a minimum within-class variance SVM with absent features (AF-V-SVM) was proposed based on the technology of minimum class variance SVM (MCVSVM).On the one hand, AF-V-SVM could improve the direction of the classification hyper plane with the information of the distribution feature of the data set; on the other hand, this method adjusted the proportion of misclassified data by freely setting the definition space of classification margin. Experiments showed that the method in this paper was superior to other absent features based classification methods in the aspects of classification accuracy and rationality.

Key words: feature absence; within-class variance; support vector machine; pattern classification

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!