您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

J4 ›› 2010, Vol. 45 ›› Issue (7): 65-69.

• 论文 • 上一篇    下一篇

基于稀疏性约束非负矩阵分解的人脸年龄估计方法

杜吉祥1,2,余庆1,翟传敏1   

  1. 1. 华侨大学计算机科学与技术学院, 福建 泉州 362021; 2. 中国科学院合肥智能机械研究所, 安徽 合肥 230031
  • 收稿日期:2010-04-02 出版日期:2010-07-16 发布日期:2010-09-06
  • 作者简介:杜吉祥(1977-),男,副教授,博士,主要研究方向为模式识别、人工神经网络.Email:jxdu77@gmail.com
  • 基金资助:

    国家自然科学基金资助项目(60805021);福建省自然科学基金资助项目(0810010);中国博士后科学基金资助项目(20060390180&200801231);华侨大学科研基金资助项目(09HZR14&09HZR15)

Age estimation of facial images based on non-negative matrix factorization with sparseness constraints

DU Ji-xiang1,2, YU Qing1, ZHAI Chuan-ming1   

  1. 1. College of Computer Science and Technology, Huaqiao University, Quanzhou  362021, Fujiang, China;
    2. Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031, Anhui, China
  • Received:2010-04-02 Online:2010-07-16 Published:2010-09-06

摘要:

基于人脸图像的年龄自动估计已经成为当前人脸识别领域的一个重要研究方向。首先通过非负矩阵分解(non-negative matrix factorization, NMF)算法对基矩阵或系数矩阵进行稀疏性约束,用形成的更具有局部表达能力的子空间对人脸图像数据进行表示。然后使用径向基函数神经网络进行训练和测试,提取包含在大多数人脸图像上的年龄信息来进行年龄估计。实验结果表明,具有稀疏性约束的非负矩阵分解算法对年龄估计问题具有良好的应用效果。

关键词: 年龄估计;非负矩阵分解;稀疏表示;人脸图像

Abstract:

Automatic age estimation based on facial images has been become an important orientation of the face recognition research. By applying sparseness constrains to base matrix or coefficient matrix in the factorization of non-negative matrix factorization, a new subspace could be formed  with part-based representation ability to describe image data. And the radial basis function neural networks was used to extract the aging information contained in most facial image. The experimental results demonstrated that the non-negative matrix factorization with sparseness constraints algorithm could achieved a better performance for age estimation task.

Key words: age estimation; non-negative matrix factorization; sparse representation; facial image

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!