您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

J4 ›› 2010, Vol. 45 ›› Issue (7): 86-93.

• 论文 • 上一篇    下一篇

基于脉冲耦合神经网络的多区域图像分割

徐光柱1,刘鸣2,任东1,马义德3,刘晓丽1   

  1. 1. 三峡大学计算机与信息学院智能视觉与图像信息研究所, 湖北 宜昌 443002;
    2. 三峡大学艺术学院实验中心, 湖北 宜昌 443002;
    3. 兰州大学信息科学与工程学院, 甘肃 兰州 730000
  • 收稿日期:2010-04-02 出版日期:2010-07-16 发布日期:2010-09-06
  • 作者简介:徐光柱(1979-),男,讲师,博士,主要研究方向为图像处理、模式识别、生物特征识别.Email:xugzh02@gmail.com
  • 基金资助:

    国家自然科学基金资助项目(60972162)

Multi-region image segmentation based on pulse coupled neural network

XU Guang-zhu1, LIU Ming2, REN Dong1, MA Yi-de3, LIU Xiao-li1   

  1. 1. Institute of Intelligent Vision and Image Information, College of Computer and Information Technology,
    China Three Gorges University, Yichang 443002, Hubei, China;
    2. Experiments Center of Art Academy, China Three Gorges University, Yichang 443002, Hubei, China;
    3. School of Information Science & Engineering, Lanzhou University, Lanzhou 730000, Gansu, China
  • Received:2010-04-02 Online:2010-07-16 Published:2010-09-06

摘要:

为解决传统脉冲耦合神经网络(pulse coupled neural network,PCNN)仅限于二值分割且无法对灰度缓慢变化的大范围区域进行完整分割的问题,提出了一种基于PCNN的多区域图像分割算法。将分割图像经过平滑和归一化后送入PCNN,在快速连接机制作用下,每次迭代处理中具有相似状态的神经元可实现同步点火,完成单个图像区域的完整分割。经过预定的迭代次数后,以各神经元的点火次数为新输入图像各像素点的灰度值,然后经平滑和过归一化后再次送入PCNN重复上述处理,完成多区域图像分割。Berkeley图库的实验结果显示,该算法高效、鲁棒,可有效应用于图像分割。

关键词: 多区域图像分割;脉冲耦合神经网络;快速连接

Abstract:

In order to solve the problems that the traditional pulse coupled neural network (PCNN) refers only to binary segmentation and does not work well for bigger image regions with sluggish gray variation,a multi-region image segmentation method was proposed based on PCNN. First, the initial image was preprocessed by smoothing and normalizing and put into PCNN. Then, with the help of fast linking, neurons with similar states fired synchronously to finish single region segmentation in each iteration processing. After pre-configured iterations, the total firing times of each neuron were calculated as the pixel intensity of new input image,and then preprocessed by smoothing and normalizing again,and finally put into PCNN. The above processing was repeated to complete multi-region segmentation. Experimental results on Berkeley image database showed that the proposed method was efficient, robust and could be used to segment image effectively.
 

Key words: multi-region segmentation; pulse coupled neural network (PCNN); fast linking

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!