您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

J4 ›› 2010, Vol. 45 ›› Issue (7): 94-101.

• 论文 • 上一篇    下一篇

指纹图像分割方法综述

郭文鹃,杨公平*,董晋利   

  1. 山东大学计算机科学与技术学院, 山东 济南 250101
  • 收稿日期:2010-04-02 出版日期:2010-07-16 发布日期:2010-09-06
  • 通讯作者: 杨公平(1970-),男,副教授,博士,研究方向为生物特征识别、机器学习.
  • 作者简介:郭文鹃(1985-),女,硕士研究生,研究方向为生物特征识别、机器学习.Email:guowenjuan.china@gmail.com
  • 基金资助:

    山东省自然科学基金资助项目(ZR2009GM003);山东大学自主创新基金资助项目(2009TS034)

A review of fingerprint image segmentation methods

GUO Wen-juan, YANG Gong-ping*, DONG Jin-li   

  1. School of Computer Science and Technology, Shandong University, Jinan 250101,  Shangdong, China
  • Received:2010-04-02 Online:2010-07-16 Published:2010-09-06

摘要:

在自动指纹识别系统中,精确的指纹图像分割可以加快后续处理速度,提高识别的准确性。按照图像特征的定义范围,将指纹图像分割方法分为基于像素特征、块特征和图像全局特征的方法。对每类方法分别从特征层面与分类器层面进行了归纳总结,并简要分析了3类方法的分割错误率与时间复杂性。最后指出了目前指纹分割算法中存在的主要问题和未来的研究方向。

关键词: 指纹分割;分割特征;分类器;分割精度;时间复杂度

Abstract:

In an automatic fingerprint identification system, precise segmentation of fingerprint image contributes to speeding up subsequent processes as well as improving the recognition accuracy. Fingerprint segmentation methods can be roughly divided into three groups, including the methods based on pixel features, the methods based on block features and the methods based on global features. Here each group was introduced according to the used features and in turn classifiers. Segmentation accuracy and time complexities of the methods were also provided for brief comparison. In conclusion,  the remaining problems and list some future research directions were detailed.
 

Key words: fingerprint segmentation; segmentation feature; segmentation classifier; segmentation accuracy; time complexity

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!