您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

J4 ›› 2011, Vol. 46 ›› Issue (9): 95-98.

• CTCIS 2011 会议 • 上一篇    下一篇

基于模糊神经网络集成的入侵检测模型

姜家涛,刘志杰*,谢晓尧   

  1. 贵州师范大学贵州省信息与计算科学重点实验室, 贵州 贵阳 550001
  • 收稿日期:2011-05-19 出版日期:2011-09-20 发布日期:2011-09-08
  • 通讯作者: 刘志杰(1967- ),男,教授,博士,研究方向为信息安全、交通安全. Email:liuzj@gznu.edu.cn
  • 作者简介:姜家涛(1983- ),男,硕士研究生,研究方向为信息安全、数据挖掘. Email:jiangtao2761@163.com
  • 基金资助:

    贵州省科学技术基金项目(200917);贵州省教育厅重点项目(20090034);贵阳市科技局重点项目(2010184)

Based on integrated fuzzy-neural network intrusion detection model

JIANG Jia-tao, LIU Zhi-jie*, XIE Xiao-yao   

  1. Key Laboratory of Information and Computing Science of Guizhou Province, Guizhou Normal University,
    Guiyang 550001, Guizhou, China
  • Received:2011-05-19 Online:2011-09-20 Published:2011-09-08

摘要:

日益严峻的网络安全形势和网络协议本身的缺陷,使传统的防火墙防御的方式无法胜任。为提高对网络入侵防御能力,提出了模糊神经网络集成的入侵检测模型:首先抓取网络中的数据流,使用模糊数学的方法对数据记录入侵特征预处理。然后用集成的模糊神经网络模块接收预处理模块导入的训练数据和测试数据,通过反复训练学习,把各子树中节点的权值收敛到确定值。训练完成后,模型用于检测网络中的数据。响应模块接收模糊神经网络模块处理结果做出相应的响应。实验使用KDDCUP99网络入侵检测数据集对模型进行评测,并与单一神经网络模型相比较。结果表明模糊神经网络集成的方法检测结果比较稳定,在整体上比单一神经网络的误报率、漏报率和错报率有所降低,准确率和数据集泛化能力明显提高。

关键词: 入侵检测;模糊神经网络;模糊数学;神经网络集成

Abstract:

With increasing serious situation of network security and network defects in the agreement itself, it’s incompetent to use the traditional way of firewall. Fuzzy neural network model of integrated intrusion detection is proposed to improve the ability of intrusion prevention in network. First, the data stream is obtained from network, and the fuzzy approach is used to perform data pre-processing on characteristics of invasion. Then, the training and testing data is received by the integrated fuzzy neural network module from the data pre-processing module. Through repeated training and learning, the weights of nodes in the sub-trees converge to determine values. When training is completed, the model is used to detect the network data. The response module receives the results of fuzzy neural network module and makes the appropriate response. In the experiment, the network intrusion detection datasets, a part of KDDCUP99, are used to evaluate integrated fuzzy neural network, and compared to a single neural network model. On the whole,the result shows that fuzzy neural network ensemble method results is more stable. It was slightly reduced on false alarm rate, false negative rate and false positive rate and significantly improved on accuracy and ability of datasets generalization.

Key words:  intrusion detection; fuzzy-neural network; fuzzy integration neural network

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!