您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版)

• 论文 • 上一篇    下一篇

数据驱动核的非局部均值滤波器改进

孙忠贵1,陈杰2   

  1. 1.聊城大学数学科学学院, 山东 聊城 252000;
    2.聊城大学图书馆, 山东 聊城 252000
  • 收稿日期:2013-12-13 出版日期:2014-05-20 发布日期:2014-06-04

Improvement for non-local means using data driven kernel

SUN Zhong-gui1, CHEN Jie2   

  1. 1. Department of Mathematics Science, Liaocheng University, Liaocheng 252000, Shandong, China;
    2. Library of Liaocheng University, Liaocheng 252000, Shandong, China
  • Received:2013-12-13 Online:2014-05-20 Published:2014-06-04

摘要: 通过对非局部均值滤波器进行模型分析,发现其在一定程度上仍具有各向同性的缺陷,进而提出了一个数据依赖的改进滤波器算法。与原有算法相比,该算法采用数据驱动核对图像片加权,得到了更好的去噪效果。

关键词: 核方法, 数据驱动, 非局部均值滤波, 图像去噪

Abstract: The isotropy defect of non-local means (NLM) was pointed out with the help of model analysis. Further, an improved version of NLM was developed to compensate such a weakness. Compared with the original one, the new version based on the data driven kernel and encouraging experimental results are exhibited.

Key words: image denoising, non-local means, data-driving, kernel methods

[1] 王鹏鸣,钟茂生,刘遵雄. 去噪空间上的多核学习[J]. J4, 2012, 47(5): 49-52.
[2] 曾文赋1,黄添强1,2,李凯1,余养强1,郭躬德1,2. 基于调和平均测地线核的局部线性嵌入算法[J]. J4, 2010, 45(7): 55-59.
[3] 万海平,何华灿,周延泉 . 局部核方法及其应用[J]. J4, 2006, 41(3): 18-20 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!