山东大学学报(理学版) ›› 2014, Vol. 49 ›› Issue (11): 59-67.doi: 10.6040/j.issn.1671-9352.3.2014.077
严为绒, 洪宇, 朱珊珊, 车婷婷, 姚建民, 朱巧明
YAN Wei-rong, HONG Yu, ZHU Shan-shan, CHE Ting-ting, YAO Jian-min, ZHU Qiao-ming
摘要: 针对篇章隐式关系检测较难的问题,提出了一种基于语义场景匹配的平行推理方法.该方法利用框架语义学,将论元抽象为概念一级的语义描述(简称语义场景),实现描述形式的压缩.基于大规模静态数据,通过语义场景的匹配挖掘可比较论元辅助关系推理.该方法能够在保证检测精度的同时,提升检测效率.利用宾州篇章树库(penn discourse tree bank, PDTB)对这一检测方法进行评测,检测精度为55.26%.
中图分类号:
[1] PRASAD R, DINESH N, LEE A, et al. The Penn discourse treebank 2.0[C]// Proceedings of the 6th International Conference on Language Resources and Evaluation (LREC). Marrakech, Morocco, 2008: 2961-2968. [2] MILTSAKAKI E, LIVIO R, ALAN L, et al. Sense annotation in the Penn discourse treebank[C]// Proceedings of the 9th International Conference on Computational Linguistics and Intelligent Text Processing. Heidelberg: Springer-Verlag Berlin, 2008(4919): 275-286. [3] MEHWISH R,GIRJU R. Another look at causality: discovering scenario-specific contingency relationships with no supervision[C]// Proceedings of the 4th IEEE International Conference on Semantic Computing (ICSC). Pittsburgh, USA: IEEE, 2010: 361-368. [4] DO Xuanquang, CHAN Yee-seng, DAN Roth. Minimally supervised event causality identification[C]// Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP). Stroudsburg, PA, USA: Association for Computational Linguistics, 2011: 294-303. [5] ZHOU Lanjun, LI Binyang, GAO Wei, et al. Unsupervised discovery of discourse relations for eliminating intra-sentence polarity ambiguities[C]// Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP). Stroudsburg, PA, USA: Association for Computational Linguistics, 2011: 162-171. [6] 王继成, 武港山, 周源远, 等.一种篇章结构指导的中文Web文档自动摘要方法[J].计算机研究与发展, 2003, 40(3):398-405. WANG Jicheng, WU Gangshan, ZHOU Yuanyuan, et al. Research on automatic summarization of Web document guided by discourse[J]. Journal of Computer Research and Development, 2003, 40(3):398-405. [7] PITLER E, RAGHUPATHY M, MEHTA H, et al. Easily identifiable discourse relations[C]// Proceedings of the 22nd International Conference on Computational Linguistics (COLING). Manchester, UK, 2008: 87-90. [8] WANG Wenting, SU Jian, TAN Chew-Lim. Kernel based discourse relation recognition with temporal ordering information[C]// Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics. Uppsala, Sweden: ACL, 2010: 710-719. [9] HONG Yu, ZHOU Xiaopei, CHE Tingting, et al. Cross-argument inference for implicit discourse relation recognition[C]// Proceedings of the 21st ACM International Conference on Information and Knowledge Managemen. New York: ACM, 2012: 295-304. [10] FILLMORE C J. Frame semantics and the nature of language[J]. Annals of the New York Academy of Sciences, 1976, 280:20-32. [11] PITLER E, LOUIS A, NENKOVA A. Automatic sense prediction for implicit discourse relations in text[C]// Proceedings of the 47th Annual Meeting of the ACL and the 4th IJCNLP of the AFNLP. Stroudsb: Association for Computational Linguistics, 2009: 683-691. [12] LIN Ziheng, KAN Min-Yen, NG H T. Recognizing implicit discourse relations in the Penn discourse treebank[C]// Proceedings of 2009 Conference on Empirical Methods in Natural Language Processing (EMNLP). Stroudsburg, PA, USA: Association for Computational Linguistics, 2009: 343-351. [13] SORICUT R, MARCU D. Sentence level discourse parsing using syntactic and lexical information[C]// Proceedings of 2003 Conference of the North America Chapter of the Association for Computational Linguistics on Human Language Technology (NAACL). Stroudsburg, PA, USA: Association for Computational Linguistics, 2003: 149-156. [14] MARCU D, ECHIHABI A. An unsupervised approach to recognizing discourse relations[C]// Proceedings of the 40th Annual Meeting on Association for Computational Linguistics. Stroudsburg, PA, USA: Association for Computational Linguistics, 2002: 368-375. [15] SAITO M, YAMAMOTO K, SEKINE S. Using phrasal patterns to identify discourse relations[C]// Proceedings of the Human Language Technology Conference of the NAACL. Stroudsburg, PA, USA: Association for Computational Linguistics, 2006: 133-136. [16] ZHOU Zhimin, XU Yu, NIU Zhengyu, et al. Predicting discourse connectives for implicit discourse relation recognition[C]// Proceedings of the 23th International Conference on Computational Linguistics (COLING). Beijing, China, 2010: 1507-1514. [17] PARK J, CARDIE C. Improving implicit discourse relation recognition through feature set optimization[C]// Proceedings of the 13th Annual Meeting of the Special Interest Group on Discourse and Dialogue (SIGDIAL). Seoul: Association for Computational Linguistics, 2012: 108-112. [18] BIRAN O, MCKEOWN K. Aggregated word pair features for implicit discourse relation disambiguation[C]// Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (ACL). Sofia, Bulgaria: ACL, 2013: 69-73. [19] NAPOLES C, GORMLEY M, DURME B V. Annotated Gigaword[C]// Proceedings of the Joint Workshop on Automatic Knowledge Base Construction & Web-scale Knowledge Extraction (AKBC-WEKEX) of NAACL-HLT. Stroudsburg, PA, US: Association for Computational Linguistics, 2012: 95-100. |
[1] | 杨中国, 李洪奇, 朱丽萍, 刘蔷. 基于语义模式和引用分布的科技文献信息抽取[J]. 山东大学学报(理学版), 2015, 50(03): 11-19. |
|