您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2015, Vol. 50 ›› Issue (03): 40-44.doi: 10.6040/j.issn.1671-9352.0.2014.305

• 论文 • 上一篇    下一篇

摩擦对二维颗粒体系中临界阻塞态的影响

张兴刚, 胡林   

  1. 贵州大学理学院, 贵州 贵阳 550025
  • 收稿日期:2014-07-01 修回日期:2015-01-06 出版日期:2015-03-20 发布日期:2015-03-13
  • 作者简介:张兴刚(1980- ),男,博士,副教授,研究方向为统计物理和凝聚态理论。 E-mail:sci.xgzhang@gzu.edu.cn
  • 基金资助:
    贵州大学引进人才科研基金资助项目(201334);贵州省自然科学基金资助项目20122140);国家自然科学基金资助项目(11264006)

Effect of friction on the critical jammed states of two-dimensional granular systems

ZHANG Xing-gang, HU Lin   

  1. College of Science, Guizhou University, Guiyang 550025, Guizhou, China
  • Received:2014-07-01 Revised:2015-01-06 Online:2015-03-20 Published:2015-03-13

摘要: 采用离散元法(discrete element method, DEM)对双分散圆盘颗粒体系在均匀压缩过程中的阻塞转变进行数值模拟,讨论了摩擦对临界阻塞态的影响。随着摩擦系数的增大,临界阻塞态的体积分数与平均接触数减小,其力学平均接触数与几何平均接触数的差异增大,同时各种接触类型的百分比也在发生改变。模拟结果还表明,摩擦系数为零以及无穷大的临界阻塞态是等静态堆积,临界阻塞态的体积分数随力学平均接触数呈线性增长的关系。

关键词: 颗粒体系, 平均接触数, 体积分数, 临界阻塞态

Abstract: The DEM simulation was conducted to investigate the jamming transition of bidisperse disk assemblies under isotropic compression, and the effect of friction on the critical jammed states was mainly discussed. As the friction coefficient increases, the packing fraction and the average contact number decrease; the difference between mechanical and geometrical average contact number increases; and the percentage of particles which have different contact numbers also varies with friction. According to the numerical results, the critical jammed states got from zero and infinite friction coefficient are isostatical packing, and the packing fraction shows a linear correlation with mechanical average contact number at J point.

Key words: granular systems, critical jammed states, volume fraction, average contact number

中图分类号: 

  • O414.2
[1] LIU A J, NAGEL S R. Jamming is not just cool any more[J].Nature, 1998, 396(5):21-22.
[2] CORWIN E I, JAEGER H M, NAGEL S R. Structural signature of jamming in granular media[J]. Nature, 2005, 435(7045):1075-1078.
[3] 欧阳鸿武,黄誓成,彭政,等.颗粒物质的堵塞行为[J]. 粉末冶金材料科学与工程,2008,13(5):260-268. OUYANG Hongwu, HUANG Shicheng, PENG Zheng, et al. Jamming of granular matter[J]. Materials Science and Engineering of Powder Metallurgy, 2008, 13(5):260-268.
[4] OHERN C S, LANGER S A, et al. Random packings of frictionless particles[J]. Phys Rev Lett, 2002, 88(7):075507.
[5] MAJMUDAR T S, SPERL M, LUDING S, et al. Jamming transition in granular systems[J]. Phys Rev Lett, 2007, 98(5):058001.
[6] SONG Chaoming, WANG Ping, MAKSE H A. A phase diagram for jammed matter[J]. Nature, 2008, 453:629-632.
[7] SILBERT L E. Jamming of frictional spheres and random loose packing[J]. Soft Matter, 2010, 6(13):2918-2924.
[8] 张国华,孙其诚,黄芳芳,等.摩擦颗粒体系各向同性压缩过程中的堵塞行为[J].物理学报,2011,60(12):124502.1-124502.7. ZHANG Guohua, SUN Qicheng, HUANG Fangfang, et al. Jamming phenomena of a two-dimensional frictional granular system under isotropic confining[J]. Acta physica Sinica, 2011, 60(12):124502.1-124502.7.
[9] PAPANIKOLAOU S, OHERN C S, SHATTUCK M D. Isostaticity at frictional jamming[J]. Phys Rev Lett, 2013, 110:198002.
[10] BI D P, ZHANG J, CHAKRABORTY B, et al. Jamming by shear[J]. Nature, 2011, 480:355-358.
[11] BANDI M M, RIVERA M K, KRZAKALA F, et al. Fragility and hysteretic creep in frictional granular jamming[J]. Phys Rev E, 2013, 87(4):042205.
[12] 孙其诚,厚美瑛,金峰,等.颗粒物质物理与力学[M]. 北京:科学技术出版社,2011. SUN Qicheng, HOU Meiying, JIN Feng, et al. The physics and mechanics of granular material[M]. Beijing: Science and Technology Press, 2011.
[13] ZHANG Xinggang, HU Lin. Tangential force distribution in granular system of compositional disorder[J]. Chinese J Comput Phys, 2012, 29(4):627-632.
[1] 高立科,胡林*,张兴刚,邓雄. 二维静态颗粒体系中转向系数与#br# 体积分数的实验研究[J]. 山东大学学报(理学版), 2014, 49(1): 54-58.
[2] 张兴刚,胡林. 力网系统理论中分布函数的积分[J]. J4, 2011, 46(7): 35-38.
[3] 吴 宇,胡 林,曲东升,汤 燕,张忠政,杜学能,许 锋 . 棒在颗粒物质中穿行时摩擦振荡行为的研究[J]. J4, 2007, 42(5): 34-37 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!