您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2015, Vol. 50 ›› Issue (11): 91-97.doi: 10.6040/j.issn.1671-9352.0.2015.167

• 论文 • 上一篇    下一篇

离散时间多输入时滞系统的镇定性问题

李琳, 张焕水   

  1. 山东大学控制科学与工程学院, 山东 济南 250061
  • 收稿日期:2015-04-16 修回日期:2015-07-22 出版日期:2015-11-20 发布日期:2015-12-09
  • 通讯作者: 张焕水(1963-),男,博士,教授,研究方向为最优鲁棒控制与估计、传感器网络系统、时滞系统、随机系统.E-mail:hszhang@sdu.edu.cn E-mail:hszhang@sdu.edu.cn
  • 作者简介:李琳(1987-),女,博士研究生,研究方向为时滞系统、随机系统、最优控制、镇定性.E-mail:linli_1987@163.com
  • 基金资助:
    国家自然科学基金资助项目(61120106011,61203029);山东省泰山学者建设工程项目

Stabilization for discrete-time systems with multiple input delays

LI Lin, ZHANG Huan-shui   

  1. School of Control Science and Engineering, Shandong University, Jinan 250061, Shandong, China
  • Received:2015-04-16 Revised:2015-07-22 Online:2015-11-20 Published:2015-12-09

摘要: 在系统矩阵和输入矩阵满足某种条件的前提下,给出了系统可镇定的充要条件及镇定系统的反馈控制器设计。使用的方法是基于系统简化,把原问题转化成等价的无时滞系统的镇定性问题。

关键词: 输入时滞, 系统简化, 镇定性

Abstract: Under some constraint on the system matrix and input matrix, the necessary and sufficient stabilization condition and the stabilizing controller for the system were proposed. Our approach is to convert the original problem into an equivalent stabilization problem for delay-free system on the basis of system reduction.

Key words: input delay, system reduction, stabilization

中图分类号: 

  • TP13
[1] KOLMANOVSKII V B, MYSHKIS A. Introduction to the theory and applications of functional differential equations[M]. Dordrecht:Kluwer Academy, 1999.
[2] ROSS D W, FlVGGE-LOTZ I. An optimal control problem for systems with differential-difference equation dynamics[J]. SIAM Journal on Control, 1969, 7(4):609-623.
[3] KOIVO H N, LEE E B. Controller synthesis for linear systems with retarded state and control variables and quadratic cost[J]. Automatica, 1972, 8(2):203-208.
[4] ZHANG Huanshui, DUAN Guangren, XIE Lihua. Linear quadratic regulation for linear time-varying systems with multiple input delays[J]. Automatica, 2006, 42(9):1465-1476.
[5] LIU Chongyang, LOXTON R, TEO K L. A computational method for solving time-delay optimal control problems with free terminal time[J]. Systems & Control Letters, 2014, 72:53-60.
[6] CHOI H H, CHUNG M J. Memoryless H controller design for linear systems with delayed state and control[J]. Automatica, 1995, 31(6):917-919.
[7] TADMOR G. The standard H problem in systems with a single input delay[J]. IEEE Transactions on Automatic Control, 2000, 45(3):382-397.
[8] TADMOR G, MIRKIN L. H control and estimation with preview-part II:fixed-size ARE solutions in discrete time[J]. IEEE Transactions on Automatic Control, 2005, 50(1):29-40.
[9] KRASOVSKII N N. Stability of motion[M]. Stanford CA:Stanford University Press, 1963.
[10] GU Keqin. Discretization schemes for Lyapunov-Krasovskii functionals in time delay systems[J]. Kybernetica, 2001, 37(4):479-504.
[11] NICULESCU S I. Delay effects on stability:a robust control approach[M]. Berlin:Springer, 2001.
[12] ZHAO Xudong, ZHANG Lixian, SHI Peng. Stability of a class of switched positive linear time-delay systems[J]. International Journal of Robust and Nonlinear Control, 2013, 23(5):578-589.
[13] OLBROT A W. Stabilizability, detectability, and spectrum assignment for linear autonomous systems with general time delays[J]. IEEE Transactions on Automatic Control, 1978, AC-23(5):887-890.
[14] WATANABE K, ITO M. A process-mode control for linear systems with delay[J]. IEEE Transactions on Automatic Control, 1981, AC-26(6):1261-1269.
[15] KWON W H, PEARSON A E. Feedback stabilization of linear systems with delayed control[J]. IEEE Transactions on Automatic Control, 1980, AC-25(2):266-269.
[16] ARTSTEIN Z. Linear systems with delayed controls:a reduction[J]. IEEE Transactions on Automatic Control, 1982, AC-27(4):869-879.
[17] ZHOU Bin. Stabilization of discrete-time systems with multiple actuator delays and saturations[J]. IEEE Transactions on Circuits and SystemsⅠ:Regular Papers, 2013, 60(2):389-400.
[18] JI Kun. Real-time control over networks[D]. Texas:A & M University, 2006.
[19] IONETE C, CELA A, GAID M B. Controllability and observability of input/output delayed discrete systems[C]//Proceedings of the 2006 American Control Conference, 2006:3513-3518.
[20] HAUTUS M L J. Stabilization controllability and observability of linear autonomous systems[C]//Indagationes Mathematicae, 1970, 32:448-455.
[21] 郑大钟.线性系统理论[M].2版.北京:清华大学出版社,2002. ZHENG Dazhong. Linear system theory[M]. 2nd ed. Beijing:Press of Tsinghua University, 2002.
[1] 高荣,张焕水. 离散时间多输入时滞随机系统的镇定性[J]. 山东大学学报(理学版), 2017, 52(4): 105-110.
[2] 谭成,张焕水. 具有输入时滞的离散时间随机系统Lyapunov镇定性条件[J]. 山东大学学报(理学版), 2016, 51(5): 114-120.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!