您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2016, Vol. 51 ›› Issue (1): 58-64.doi: 10.6040/j.issn.1671-9352.1.2015.035

• • 上一篇    下一篇

基于词对齐模型的中文评价对象与评价词抽取

陈兴俊,魏晶晶,廖祥文*,简思远,陈国龙   

  1. 福州大学数学与计算机科学学院, 福建 福州 350116
  • 收稿日期:2015-09-25 出版日期:2016-01-16 发布日期:2016-11-29
  • 通讯作者: 廖祥文(1980— ),男,副教授,研究方向为网络文本倾向性分析.E-mail: liaoxw@fzu.edu.cn E-mail:mrchenxj@qq.com
  • 作者简介:陈兴俊(1989— ),男,硕士研究生,研究方向为面向社会媒介的观点挖掘.E-mail:mrchenxj@qq.com
  • 基金资助:
    国家自然科学基金青年项目(61300105);教育部博士点基金联合资助项目(2012351410010);福建省科技重大专项项目(2013H6012);福州市科技计划项目(2012-G-113,2013-PT-45)

Extraction of opinion targets and opinion words from Chinese sentences based on word alignment model

CHEN Xing-jun, WEI Jing-jing, LIAO Xiang-wen*, JIAN Si-yuan, CHEN Guo-long   

  1. College of Mathematics and Computer Science, Fuzhou University, Fuzhou 350116, Fujian, China
  • Received:2015-09-25 Online:2016-01-16 Published:2016-11-29

摘要: 提出一种基于统计机器翻译的思想抽取评价对象与评价词的方法。该方法利用词对齐模型抽取评价对象与评价词之间的关系,并结合词共现信息等特征来估计两者关系的强度。建立一张二分图刻画评价关系,并加入领域相关性度量,利用随机游走算法迭代计算候选评价对象与评价词的置信度。在COAE2011任务3的语料上进行试验验证。结果表明,利用词对齐模型抽取评价对象与评价词可以有效提高准确度,抽取出更多的评价对象与评价词。

关键词: 评价对象抽取, 中文句子, 评价词抽取, 词对齐模型

Abstract: This paper proposed an approach to extract opinion targets and opinion words based on the idea of statistical machine translation. This method extracted the associations between opinion targets and opinion words by using word alignment model, whose strength was estimated with word co-occurrence. To model these associations, the approach constructed a bipartite graph. Then a domain relevance measure was used, and random-walk algorithm was applied to calculate the confidence of each opinion target candidates and opinion word candidates. The method was evaluated on the labeled corpus of task 3 in COAE2011.The experiment results showed that it could effectively improve the accuracy by employing the model of word-alignment to extract opinion targets and opinion words, and the method could extract more targets and words simultaneously.

Key words: opinion targets extraction, Chinese sentence, word-alignment model, opinion word extraction

中图分类号: 

  • TP391
[1] QIU Guang, LIU Bing, BU Jiajun, et al. Opinion word expansion and target extraction through double propagation[J].Computational Linguistics, 2011, 37(1):9-27.
[2] KIM S M, HOVY E. Identifying opinion holders for question answering in opinion texts[C] //Proceedings of AAAI-05 Workshop on Question Answering in Restricted Domains. Pennsylvania:[s.n.] , 2005:20-26.
[3] 章剑锋,张奇,吴立德,等. 中文观点挖掘中的主观性关系抽取[J].中文信息学报,2008,22(2):5-59. ZHANG Jianfeng, ZHANG Qi, WU Lide, et al. Subjective relation extraction in Chinese opinion mining[J]. Journal of Chinese Information Processing, 2008, 22(2):5-59.
[4] 方明,刘培玉. 基于最大熵模型的评价搭配识别[J].计算机应用研究,2011,28(10):3714-3716. FANG Ming, LIU Peiyu. Identification of evaluation collocation based on maximum entropy model[J]. Application Research of Computers, 2011, 28(10):3714-3716.
[5] JIN W, HO H H, SRIHARI R K. A novel lexicalized HMM-based learning framework for web opinion mining[C] //Proceedings of the 26th International Conference on Machine Learning. Montreal, Canada:[s,n.] , 2009:465-472.
[6] JAKOB N, GUREVYCH I. Extracting opinion targets in a single-and cross-domain setting with conditional random fields[C] //Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing. Vancouver: Association for Computational Linguistics, 2010:1035-1045.
[7] LI F, HAN C, HUANG M, et al. Structure-aware review mining and summarization[C] //Proceedings of the 23rd International Conference on Computational Linguistics. Beijing: Association for Computational Linguistics, 2010:653-661.
[8] HU Minqing, LIU Bing. Mining opinion features in customer reviews[C] //Proceedings of Nineteenth National Conference on Artificial Intelligence(AAAI-2004). California:[s.n.] , 2004:755-760.
[9] HU Minqing, LIU Bing. Mining and summarizing customer reviews[C] //Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Seattle:[s.n.] , 2004:168-177.
[10] BLOOM K, GARG N, ARGAMON S, et al. Extracting appraisal expressions[C] //Proceedings of Human Language Technologies/North American Association of Computational Linguists. Rochester:[s.n.] , 2007:308-315.
[11] 王菲,吴云芳,徐艺峰,等.词语搭配情感倾向的自动判别方法[C] //第三届中文倾向性分析评测. 山东:[s.n.] ,2011:52-64.
[12] ZHAO Yanyan, CHE Wanxiang, GUO Honglei, et al. Sentence Compression for Target-Polarity Word Collocation Extraction[C] //Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: Technical Papers. Dublin, Ireland: Dublin City University and Association for Computational Linguistics, 2014:1360-1369.
[13] XU Liheng, LIU Kang, LAI Siwei, et al. Mining opinion words and opinion targets in a two-stage framework[C] //Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics. Sofia:Association for Computational Linguistics, 2013:1764-1773.
[14] LIU K, XU L, ZHAO J. Opinion target extraction using word-based translation model[C] //Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning. Stroudsburg, PA, USA: Association for Computational Linguistics, 2012:1346-1356.
[15] LIU K, XU L, ZHAO J. Syntactic patterns versus word alignment: extracting opinion targets from online reviews[C] //Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics. Sofia: Association for Computational Linguistics, 2013:1754-1763.
[16] BROWN P F, PIETRA V J D, PIETRA S A D, et al. The mathematics of statistical machine translation: parameter estimation[J]. Computational Linguistics, 1993, 19(2): 263-311.
[17] 宗成庆. 统计自然语言处理[M].2版.北京:清华大学出版社,2013:297-317.
[18] WU Y, ZHANG Q, HUANG X, et al. Phrase dependency parsing for opinion mining[C] //Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing. Singapore: Association for Computational Linguistics, 2009:1533-1541.
[19] HUANG H, LIU Q, HUANG T. Appraisal expression recognition based on generalized mutual information[J]. Journal of Computers, 2013, 8(7):1715-1721.
[20] 周由, 戴牡红. 语义分析与TF-IDF方法相结合的新闻推荐技术[J]. 计算机科学, 2013,40(11A):267-269.
[21] WANG B, WANG H. Bootstrapping both product features and opinion words from Chinese customer reviews with cross-inducing[C] //Proceedings of the Third International Joint Conference on Natural Language Processing. Hyderabad, India: Association for Computer Linguistics, 2008:289-295.
[22] LIU K, XU L, ZHAO J. Extracting opinion targets and opinion words from online reviews with graph co-ranking[C] //Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics. Baltimore, Maryland: Association for Computer Linguistics, 2014: 314-324.
[23] ZHOU You, DAI Muhong. News recommendation technology combining semantic analysis with TF-IDF method[J]. Computer Scienc, 2013, 40(11A):267-269.
[24] CHE Wanxiang, LI Zhenghua, LIU Ting. LTP: a Chinese language technology platform[C] //Proceedings of the 23rd International Conference on Computational Linguistics: Demonstrations. Stroudsburg, PA, USA:Association for Computational Linguistics 2010:13-16.
[1] 朱珠, 李寿山, 戴敏, 周国栋. 结合主动学习和自动标注的评价对象抽取方法[J]. 山东大学学报(理学版), 2015, 50(07): 38-44.
[2] 孙松涛, 何炎祥, 蔡瑞, 李飞, 贺飞艳. 面向微博情感评测任务的多方法对比研究[J]. 山东大学学报(理学版), 2014, 49(11): 43-50.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!