山东大学学报(理学版) ›› 2016, Vol. 51 ›› Issue (11): 93-98.doi: 10.6040/j.issn.1671-9352.0.2016.247
张静静1,2,杨秀萍1,2,刘清2,张春秋2*
ZHANG Jing-jing1,2, YANG Xiu-ping1,2, LIU Qing2, ZHANG Chun-qiu2*
摘要: 为考虑腰椎间盘流固耦合作用,基于Biot理论建立了正常人体腰椎间盘L3~L4节段的有限元模型,分析了椎间盘在不同轴向压缩载荷及复合载荷作用下的力学响应,得到了椎间盘不同部分的压力、应力分布规律和比较曲线。结果表明:轴向正压时,外层纤维环压力约为内层的15%,外层最大应力约为髓核应力的4.3倍;椎间盘各部分所受压力随载荷增大近似线性增加,且增加的速率基本相同;应力随载荷增加而增大的速率不同,外层纤维环应力增加最为明显。轴向压缩与扭转载荷组合作用时,纤维环整体应力水平最大,最容易被破坏。
中图分类号:
[1] 黄菊英,李海云,吴浩.腰椎间盘突出症力学特征的仿真计算方法[J].医用生物力学,2012,27(1):96-101. HUANG Juying, LI Haiyun, WU Hao. Simulation calculation on biomechanical properties of lumbar disc herniation[J]. Journal of Medical Biomechanics, 2012, 27(1):96-101. [2] 陈浩,于晓华,华国军.腰椎运动节段流固耦合有限元模型的建立与验证[J].中国组织工程研究与临床康复,2010,14(52):9706-9709. CHEN Hao, YU Xiaohua, HUA Guojun.Establishment and validation of a fluid-solid coupling finite element model of the lumbar motion segment[J].Journal of Clinical Rehabilitative Tissue Engineering Research, 2010, 14(52):9706-9709. [3] BELYTSCHKO T, KULAK R F, SCHULTZ A B, et al.Finite element stress analysis of an intervertebral disc[J].Journal of Biomechanics, 1974, 3(7):277-285. [4] SCHMIDT H, HEUER F, WILKE H J. Dependency of disc degeneration on shear and tensile strains between annular fiber layers for complex loads[J].Medical Engineering & Physics, 2009, 6(31):642-649. [5] SIMON B R, WU J S, CARLTON M W, et al. Structural models for human spinal motion segments based on a poroelastic view of the intervertebral disk[J].Journal of Biomedical Engineering, 1985, 4(107):327-335. [6] 苏立,卢世璧,谢英俊.关于人体腰椎间盘生物力学的实验研究[J].中国生物医学工程学,1989,8(3):137-144. SU Li, LU Shibi, XIE Yingjun. Some biomechanl aspects of human lumbear intervertebral disc an experimental study[J]. Chinese Journal of Biomedical Engineering, 1989, 8(3):137-144. [7] 高子坤,施建勇,顾士坦.ANSYS软件在Biot固结方程求解中的应用[J].水利水电科技进展,2006,26(3):59-61. GAO Zikun, SHI Jianyong, GU Shitan. Application of sofeware ANSYS to solving Biot consolidation equation[J].Advance in Scinence and Technology of Water Resources, 2006, 26(3):59-61. [8] 董志高,胡嫣然,杨辉.ANSYS基于Biot固结理论流固耦合模型及应用[J].工程地质计算机应用,2009(3):7-12. DONG Zhigao, HU Yanran, YANG Hui. ANSYS based on Biot consolidation theory of fluid-solid coupling model and application[J].Engineering Geology Computer Application, 2009(3):7-12. [9] 孙培栋,陈春,吴长福.有限元分析中软组织力学参数的设定及验证[J].医用生物力学,2012,27(1):27-31. SUN Peidong, CHEN Chun, WU Changfu. Assignment and verification on mechanical parameters of soft tissue in finite element analysis[J].Journal of Medical Biomechanics, 2012, 27(1):27-31. [10] CHAGNON A, AUBIN C E, VILLEMURE I. Biomechanical influence of disk properties on the load transfer of healthy and degenerated disks using a poroelastic finite element model[J].ASME Journal of Biomechanical Engineering, 2010, 132(11):1-8. [11] 郭世绂.骨科临床解剖学[M].山东:山东科学技术出版社,1986:67-74. [12] 李瑞祥,周德明,张林等.实用人体解剖彩色图谱[M].北京:人民卫生出版社,2001:4-6. [13] 李睿,郭立新.低频振动作用下人体椎间盘多孔弹性单元的研究[J].应用力学学报,2013,30(4):635-640. LI Rui, GUO Lixin. Analysis on poroelastic of human interertebral disc under the low frequency vibration circumstances[J]. Chinese Journal of Applied Mechanics, 2013, 30(4):635-640. [14] 李睿,郭立新.非持续载荷下椎间盘的多孔弹性特性[J].东北大学学报(自然科学版),2013,34(4):573-577. LI Rui, GUO Lixin. Poroelastic characteristics of intervertebral disc under intermittent load[J]. Journal of Northeastern University(Natural Science), 2013, 34(4):573-577. [15] 项嫔,都承斐,赵美雅,等.全腰椎有限元模态分析[J].医用生物力学,2014,29(2):154-160. XIANG Pin, DU Chengfei, ZHAO Meiya, et al. Modal analysis of human lumbar spine using finite element method[J].Journal of Medical Biomechanics, 2014, 29(2):154-160. |
[1] | 栾义超,杨秀萍,张静静,刘清,张春秋. 压缩条件下腰椎间盘松弛特性的有限元仿真[J]. 山东大学学报(理学版), 2018, 53(3): 77-81. |
[2] | 伏虎,陈玲,门玉涛,蒋彦龙. 缺损软骨在滚压载荷下的实验与有限元分析[J]. 山东大学学报(理学版), 2017, 52(5): 37-40. |
[3] | 常延贞,羊丹平 . 热耦合斯托克斯流问题的有限元分析[J]. J4, 2007, 42(8): 9-16 . |
|