您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2016, Vol. 51 ›› Issue (11): 93-98.doi: 10.6040/j.issn.1671-9352.0.2016.247

• • 上一篇    下一篇

基于Biot理论的腰椎间盘力学响应分析

张静静1,2,杨秀萍1,2,刘清2,张春秋2*   

  1. 1. 天津理工大学天津市先进机电系统设计与智能控制重点实验室, 天津 300384;2. 天津理工大学机械工程学院, 天津 300384
  • 收稿日期:2016-05-05 出版日期:2016-11-20 发布日期:2016-11-22
  • 通讯作者: 张春秋(1968— ),男,博士后,教授,研究方向为生物力学.E-mail:zhang-chunqiu@126.com E-mail:1549473955@qq.com
  • 作者简介:张静静(1991— ),女,硕士研究生,研究方向为机械设计及理论.E-mail:1549473955@qq.com
  • 基金资助:
    国家自然科学重点基金资助项目(11432016);国家自然科学基金资助项目(11372221,81272046,11572222)

Mechanics response analysis of lumbar intervertebral disc based on Biot theory

ZHANG Jing-jing1,2, YANG Xiu-ping1,2, LIU Qing2, ZHANG Chun-qiu2*   

  1. 1. Tianjin Key Laboratory of the Design and Intelligent Control of the Advanced Mechatronical System, Tianjin University of Technology, Tianjin 300384, China;
    2. School of Mechanical Engineering, Tianjin University of Technology, Tianjin 300384, China
  • Received:2016-05-05 Online:2016-11-20 Published:2016-11-22

摘要: 为考虑腰椎间盘流固耦合作用,基于Biot理论建立了正常人体腰椎间盘L3~L4节段的有限元模型,分析了椎间盘在不同轴向压缩载荷及复合载荷作用下的力学响应,得到了椎间盘不同部分的压力、应力分布规律和比较曲线。结果表明:轴向正压时,外层纤维环压力约为内层的15%,外层最大应力约为髓核应力的4.3倍;椎间盘各部分所受压力随载荷增大近似线性增加,且增加的速率基本相同;应力随载荷增加而增大的速率不同,外层纤维环应力增加最为明显。轴向压缩与扭转载荷组合作用时,纤维环整体应力水平最大,最容易被破坏。

关键词: 力学响应, 有限元分析, Biot理论, 腰椎间盘

Abstract: In order to consider the effect of fluid-structure coupling in lumbar disc, based on Biot theory, a finite element model of L3/L4 segment of normal human lumbar intervertebral disc was created. The mechanics responses of intervertebral disc under different loads were analyzed, the distribution and the comparison curves of pressure and stress of the different parts of the intervertebral disc were obtained. The results showed that outer annulus pressure was about 15% that of the inner layer and the outer maximum stress was about 4.3 times that of nucleus pulposus under axial compressed load; pressure increased linearly with the axial load increased at the same rates and stress increased at the different rates; the outer annulus stress increased the most obvious. When axial compressed and torsion loads were combined, the holistic annulus stress level was the largest and easiest to break.

Key words: Biot theory, lumbar intervertebral disc, finite element analysis, mechanical response

中图分类号: 

  • R318.01
[1] 黄菊英,李海云,吴浩.腰椎间盘突出症力学特征的仿真计算方法[J].医用生物力学,2012,27(1):96-101. HUANG Juying, LI Haiyun, WU Hao. Simulation calculation on biomechanical properties of lumbar disc herniation[J]. Journal of Medical Biomechanics, 2012, 27(1):96-101.
[2] 陈浩,于晓华,华国军.腰椎运动节段流固耦合有限元模型的建立与验证[J].中国组织工程研究与临床康复,2010,14(52):9706-9709. CHEN Hao, YU Xiaohua, HUA Guojun.Establishment and validation of a fluid-solid coupling finite element model of the lumbar motion segment[J].Journal of Clinical Rehabilitative Tissue Engineering Research, 2010, 14(52):9706-9709.
[3] BELYTSCHKO T, KULAK R F, SCHULTZ A B, et al.Finite element stress analysis of an intervertebral disc[J].Journal of Biomechanics, 1974, 3(7):277-285.
[4] SCHMIDT H, HEUER F, WILKE H J. Dependency of disc degeneration on shear and tensile strains between annular fiber layers for complex loads[J].Medical Engineering & Physics, 2009, 6(31):642-649.
[5] SIMON B R, WU J S, CARLTON M W, et al. Structural models for human spinal motion segments based on a poroelastic view of the intervertebral disk[J].Journal of Biomedical Engineering, 1985, 4(107):327-335.
[6] 苏立,卢世璧,谢英俊.关于人体腰椎间盘生物力学的实验研究[J].中国生物医学工程学,1989,8(3):137-144. SU Li, LU Shibi, XIE Yingjun. Some biomechanl aspects of human lumbear intervertebral disc an experimental study[J]. Chinese Journal of Biomedical Engineering, 1989, 8(3):137-144.
[7] 高子坤,施建勇,顾士坦.ANSYS软件在Biot固结方程求解中的应用[J].水利水电科技进展,2006,26(3):59-61. GAO Zikun, SHI Jianyong, GU Shitan. Application of sofeware ANSYS to solving Biot consolidation equation[J].Advance in Scinence and Technology of Water Resources, 2006, 26(3):59-61.
[8] 董志高,胡嫣然,杨辉.ANSYS基于Biot固结理论流固耦合模型及应用[J].工程地质计算机应用,2009(3):7-12. DONG Zhigao, HU Yanran, YANG Hui. ANSYS based on Biot consolidation theory of fluid-solid coupling model and application[J].Engineering Geology Computer Application, 2009(3):7-12.
[9] 孙培栋,陈春,吴长福.有限元分析中软组织力学参数的设定及验证[J].医用生物力学,2012,27(1):27-31. SUN Peidong, CHEN Chun, WU Changfu. Assignment and verification on mechanical parameters of soft tissue in finite element analysis[J].Journal of Medical Biomechanics, 2012, 27(1):27-31.
[10] CHAGNON A, AUBIN C E, VILLEMURE I. Biomechanical influence of disk properties on the load transfer of healthy and degenerated disks using a poroelastic finite element model[J].ASME Journal of Biomechanical Engineering, 2010, 132(11):1-8.
[11] 郭世绂.骨科临床解剖学[M].山东:山东科学技术出版社,1986:67-74.
[12] 李瑞祥,周德明,张林等.实用人体解剖彩色图谱[M].北京:人民卫生出版社,2001:4-6.
[13] 李睿,郭立新.低频振动作用下人体椎间盘多孔弹性单元的研究[J].应用力学学报,2013,30(4):635-640. LI Rui, GUO Lixin. Analysis on poroelastic of human interertebral disc under the low frequency vibration circumstances[J]. Chinese Journal of Applied Mechanics, 2013, 30(4):635-640.
[14] 李睿,郭立新.非持续载荷下椎间盘的多孔弹性特性[J].东北大学学报(自然科学版),2013,34(4):573-577. LI Rui, GUO Lixin. Poroelastic characteristics of intervertebral disc under intermittent load[J]. Journal of Northeastern University(Natural Science), 2013, 34(4):573-577.
[15] 项嫔,都承斐,赵美雅,等.全腰椎有限元模态分析[J].医用生物力学,2014,29(2):154-160. XIANG Pin, DU Chengfei, ZHAO Meiya, et al. Modal analysis of human lumbar spine using finite element method[J].Journal of Medical Biomechanics, 2014, 29(2):154-160.
[1] 栾义超,杨秀萍,张静静,刘清,张春秋. 压缩条件下腰椎间盘松弛特性的有限元仿真[J]. 山东大学学报(理学版), 2018, 53(3): 77-81.
[2] 伏虎,陈玲,门玉涛,蒋彦龙. 缺损软骨在滚压载荷下的实验与有限元分析[J]. 山东大学学报(理学版), 2017, 52(5): 37-40.
[3] 常延贞,羊丹平 . 热耦合斯托克斯流问题的有限元分析[J]. J4, 2007, 42(8): 9-16 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!