您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2016, Vol. 51 ›› Issue (5): 114-120.doi: 10.6040/j.issn.1671-9352.0.2015.507

• • 上一篇    下一篇

具有输入时滞的离散时间随机系统Lyapunov镇定性条件

谭成,张焕水*   

  1. 山东大学控制科学与工程学院, 山东 济南 250061
  • 收稿日期:2015-10-30 出版日期:2016-05-20 发布日期:2016-05-16
  • 通讯作者: 张焕水(1963— ), 男,博士,教授,研究方向为最优鲁棒控制与估计,传感器网络系统,时滞系统,随机系统. ;E-mail:hszhang@sdu.edu.cn E-mail:tancheng1987love@163.com
  • 作者简介:谭成(1987— ),男,博士研究生,研究方向为时滞系统,随机系统,网络控制系统,镇定性. E-mail:tancheng1987love@163.com
  • 基金资助:
    山东省泰山学者建设工程项目;国家自然科学基金资助项目(61120106011,61203029)

Lyapunov-type stabilizating conditions of discrete-time stochastic systems with input delay

TAN Cheng, ZHANG Huan-shui*   

  1. School of Control Science and Engineering, Jinan 250061, Shandong, China
  • Received:2015-10-30 Online:2016-05-20 Published:2016-05-16

摘要: 主要研究了具有输入时滞和乘性噪声的离散时间随机系统渐近均方镇定性问题。首先,基于Lyapunov不等式,给出易于验证的系统渐近均方镇定性的充分条件。其次,基于耦合Lyapunov方程,得到系统渐近均方镇定性的必要性条件。值得注意的是,当所研究系统退化为无时滞随机系统或确定性时滞系统,系统的渐近均方镇定性等价于耦合Lyapunov方程解的存在唯一性。

关键词: 渐近均方镇定性, 输入时滞, 随机系统, 耦合Lyapunov方程

Abstract: This paper mainly studies the asymptotical mean square stabilization problem for discrete-time stochastic system with single input delay and multiplicative noises. First, expressed by Lyapunov-type inequalities, some sufficient and easily verified stabilizing conditions in mean square sense are developed. Second, based on the derived coupled Lyapunov-type equations(CLEs), a necessary condition is developed. It is remarkable that when the considered stochastic system with input delay degrades into the stochastic system without input delay or the deterministic time-delay system, the reduced system is asymptotical mean square stabilizable if and only if the given CLEs have unique solutions.

Key words: stochastic system, coupled Lyapunov-type equation, input delay, stabilization

中图分类号: 

  • TP13
[1] AIT RAMI M, ZHOU X. Linear matrix inequalities, Riccati equations and indefinite stochastic linear quadratic controls[J]. IEEE Transactions on Automatic Control, 2000, 45(6):1131-1143.
[2] GHAOUI L E, AIT RAMI M. Robust state-feedback stabilization of jump linear systems via LMIs[J]. Journal of Robust and Nonlinear Control, 1996, 6:1015-1022.
[3] HUANG Y, ZHANG W, ZHANG H. Infinite horizon linear quadratic optimal control for discrete-time stochastic systems[J]. Asian Journal of Control, 2008, 10(5):608-615.
[4] ZHANG W, CHEN B S. On stabilizability and exact observability of stochastic systems with their applications[J]. Automatica, 2004, 40:87-94.
[5] ZHANG W, ZHANG H, CHEN B S. Generalized Lyapunov equation approach to state-dependent stochastic stabilization/detectability criterion[J]. IEEE Transactions on Automatic Control, 2008, 53(7):1630-1642.
[6] JI K. Real-time control over networks[D]. Texas: Texas A&M University, USA, 2006.
[7] ZHANG W, BRANICKY M S, PHILLIPS S M. Stability of networked control systems[J]. IEEE Control Systems Magazine, 2001, 21(1):84-99.
[8] HESPANHA J P, NAGHSHTABRIZI P, XU Y. A survey of recent results in networked control systems[J]. Proceedings of the IEEE, 2007, 95(1):138-162.
[9] SCHENATO L, SINOPOLI B, FRANCESCHETTI M, et al. Foundations of control and estimation over lossy networks[J]. Proceedings of the IEEE, 2007, 95(1):163-187.
[10] XIAO N, XIE L, QIU L. Feedback stabilization of discrete-time networked systems over fading channels[J]. IEEE Transactions on Automatic Control, 2012, 57(9):2176-2189.
[11] ZHANG W, YU L. Modelling and control of networked control systems with both network-induced delay and packet-dropout[J]. Automatica, 2008, 44(12):3206-3210.
[12] SUN J, JIANG J. Delay and data packet dropout separately related stability and state feedback stabilisation of networked control systems[J]. IET Control Theory & Applications, 2013, 7(3):333-342.
[13] LIU G. Predictive controller design of networked systems with communication delays and data loss[J]. IEEE Transactions on Automatic Control, 2010, 57(6):481-485.
[14] SCHENATO L. Optimal sstimation in networked control systems subject to random delay and packet drop[J]. IEEE Transactions on Automatic Control, 2008, 53(5):1311-1317.
[15] TAN C, LI L, ZHANG H. Stabilization of networked control systems with both network-induced delay and packet dropout[J]. Automatica, 2015, 59:194-199.
[16] ZHANG H, LI L, XU J, et al. Linear quadratic regulation and stabilization of discrete-time systems with delay and multiplicative noise[J]. IEEE Transactions on Automatic Control, 2015, 60(10):2599-2613.
[17] WATANABE K, ITO M. A process-model control for linear systems with delay[J]. IEEE Transactions on Automatic Control, 1981, 26(6):1261-1269.
[1] 高荣,张焕水. 离散时间多输入时滞随机系统的镇定性[J]. 山东大学学报(理学版), 2017, 52(4): 105-110.
[2] 李琳, 张焕水. 离散时间多输入时滞系统的镇定性问题[J]. 山东大学学报(理学版), 2015, 50(11): 91-97.
[3] 黄玉林,张维海,李庆华 . 一类非线性随机不确定系统的鲁棒滤波[J]. J4, 2006, 41(2): 78-84 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!