您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2016, Vol. 51 ›› Issue (5): 121-129.doi: 10.6040/j.issn.1671-9352.0.2015.383

• • 上一篇    下一篇

完全耦合正倒向随机控制系统的动态规划原理与最大值原理之间的联系

聂天洋,史敬涛*   

  1. 山东大学数学学院, 山东 济南 250100
  • 收稿日期:2015-07-26 出版日期:2016-05-20 发布日期:2016-05-16
  • 通讯作者: 史敬涛(1978— ),男,博士,副教授,研究方向为随机控制、正倒向随机系统、时滞随机系统、金融数学.E-mail:shijingtao@sdu.edu.cn E-mail:nietianyang@sdu.edu.cn
  • 作者简介:聂天洋(1986— ),男,博士,助理研究员,研究方向为随机控制理论及其应用.E-mail: nietianyang@sdu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(61573217,11571205,11301011,11201264);山东省自然科学基金资助项目(JQ201401,ZR2015JL003);山东大学基本科研业务费资助项目(2015HW023)

The connection between DPP and MP for the fully coupled forward-backward stochastic control systems

NIE Tian-yang, SHI Jing-tao*   

  1. School of Mathematics, Shandong University, Jinan 250100, Shandong, China
  • Received:2015-07-26 Online:2016-05-20 Published:2016-05-16

摘要: 研究了完全耦合正倒向随机控制系统的动态规划原理和最大值原理之间的联系,其递归效用泛函由受控完全耦合的正倒向随机微分方程的解给出。主要结果是在一定的光滑性假设下,给出了最优值函数、广义哈密顿函数和对偶过程之间的联系,但正向方程的扩散项不含变量z。一般情形的结果仍是公开问题。最后给出一个线性例子来解释理论结果。

关键词: 完全耦合正倒向随机微分方程, 最大值原理, 随机最优控制, 动态规划原理

Abstract: This paper is concerned with the connection between dynamic programming principle(DPP)and maximum principle(MP)for the forward-backward stochastic control system, where the recursive cost functional is defined as one of the solution to a controlled fully coupled forward-backward stochastic differential equation(FBSDE). With some smooth assumptions, relations among the value function, generalized Hamiltonian function and adjoint processes are given, when the diffusion coefficient of the forward equation does not contain the state variable z. The general case for the problem is open. A linear example is discussed as the illustration of our main result.

Key words: fully coupled forward-backward stochastic differential equation, maximum principle, stochastic optimal control, dynamic programming principle

中图分类号: 

  • O241.82
[1] PARDOUX E, PENG S G. Adapted solution of a backward stochastic differential equation[J].Systems & Control Letters, 1990, 14(1):55-61.
[2] ANTONELLI F. Backward-forward stochastic differential equations[J]. The Annals of Applied Probability, 1993, 3(3):777-793.
[3] PENG S G, WU Z. Fully coupled forward-backward stochastic differential equations and applications to optimal control[J]. SIAM Journal on Control and Optimization, 1999, 37(3):825-843.
[4] YONG J. Optimality variational principle for controlled forward-backward stochastic differential equations with mixed initial-terminal conditions[J]. SIAM Journal on Control and Optimization, 2010, 48(6): 4119-4156.
[5] YONG J. A leader-follower stochastic linear quadratic differential game [J]. SIAM Journal on Control and Optimization, 2002, 41(4):1015-1041.
[6] CVITANIC J, WAN X, ZHANG J. Optimal contracts in continuous-time models[J]. International Journal of Stochastic Analysis, 2006, 95203:1-27.
[7] MA J, WU Z, ZHANG D, et al. On wellposedness of forward-backward SDEs-A unified approach [J]. The Annals of Applied Probability, 2011, 25(4):2168-2214.
[8] PENG S G. Backward stochastic differential equations and applications to optimal control [J].Applied Mathematics and Optimization, 1993, 27(2):125-144.
[9] WU Z. Maximum principle for optimal control problem of fully coupled forward-backward stochastic systems[J]. System Science and Mathematical Science, 1998, 11(3):249-259.
[10] SHI J T, WU Z. The maximum principle for fully coupled forward-backward stochastic control system[J]. Acta Automatica Sinica, 2006(2):161-169.
[11] 吴臻, 徐爱平. 状态约束下完全耦合的正倒向随机控制问题的最大值原理[J]. 山东大学学报(理学版), 2000, 35(4):373-380. WU Zhen, XU Aiping. The maximum principle for fully coupled forward-backward stochastic control problems with state constraints[J]. Journal of Shandong University(Natural Science), 2000, 35(4):373-380.
[12] 史敬涛. 状态约束下完全耦合的正倒向随机控制问题的最大值原理[J]. 山东大学学报(理学版), 2007, 42(1): 44-48. SHI Jingtao. The maximum principle for fully coupled forward-backward stochastic control problems with state constraints [J]. Journal of Shandong University(Natural Science), 2007, 42(1):44-48.
[13] LI J, WEI Q. Optimal control problems of fully coupled FBSDEs and viscosity solutions of Hamilton-Jacobi-Bellman equations[J]. SIAM Journal on Control and Optimization, 2013, 52(3):1622-1662.
[14] YONG J M, ZHOU X Y. Stochastic controls: Hamiltonian systems and HJB equations[M]. New York: Springer-Verlag, 1999.
[15] SHI J T, YU Z. Relationship between maximum principle and dynamic programming for stochastic recursive optimal control problems and applications[J]. Mathematical Problems in Engineering, 2013, 2013(4):46-49.
[16] WU Z, YU Z. Probabilistic interpretation for a system of quasilinear parabolic partial differential equation combined with algebra equations [J]. Stochastic Processes and Their Applications, 2014, 124(12):3921-3947.
[1] 孙启良,张启侠*. 随机H2/H∞控制的最大值原理方法[J]. J4, 2013, 48(09): 90-95.
[2] 陈丽. 超前BSDE中Z的性质及其在时滞随机控制中的应用[J]. J4, 2010, 45(4): 16-20.
[3] 魏立峰,陈丽. 一类带松弛控制的HamiltonJacobiBellman方程的粘性解[J]. J4, 2009, 44(12): 1-5.
[4] 郭 磊 . 确定性跳变系统的最优控制问题[J]. J4, 2007, 42(7): 82-86 .
[5] 孙 鹏,赵卫东 . 亚式期权定价问题的交替方向迎风有限体积方法[J]. J4, 2007, 42(6): 16-21 .
[6] 史敬涛 . 状态约束下完全耦合的正倒向随机控制系统的最大值原理[J]. J4, 2007, 42(1): 44-48 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!